Browse > Article
http://dx.doi.org/10.12989/sem.2013.45.6.723

A parametric study of optimum tall piers for railway bridge viaducts  

Martinez-Martin, Francisco J. (Department of Geotechnical Engineering, Universitat Politecnica de Valencia)
Gonzalez-Vidosa, Fernando (Department of Construction Engineering, Institute of Concrete Science and Technology (ICITECH), Universitat Politecnica de Valencia)
Hospitaler, Antonio (Department of Construction Engineering, Institute of Concrete Science and Technology (ICITECH), Universitat Politecnica de Valencia)
Yepes, Victor (Department of Construction Engineering, Institute of Concrete Science and Technology (ICITECH), Universitat Politecnica de Valencia)
Publication Information
Structural Engineering and Mechanics / v.45, no.6, 2013 , pp. 723-740 More about this Journal
Abstract
This paper presents a parametric study of reinforced concrete bridge tall piers with hollow, rectangular sections. Such piers are typically used in railway construction of prestressed concrete viaducts. Twenty one different piers have been studied with seven column heights of 40, 50, 60, 70, 80, 90 and 100 m and three types of 10-span continuous viaducts, whose main span lengths are 40, 50 and 60 m. The piers studied are intermediate columns placed in the middle of the viaducts. The total number of optimization design variables varies from 139 for piers with column height of 40 m to 307 for piers with column height of 100 m. Further, the results presented are of much value for the preliminary design of the piers of prestressed concrete viaducts of high speed railway lines.
Keywords
ant colony optimization; concrete structures; economic optimization; structural design; tall piers;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Paya, I., Yepes, V., Gonzalez-Vidosa, F. and Hospitaler, A. (2008), "Multiobjective optimization of concrete frames by simulated annealing", Comput.-Aided Civil Infrastruct. Eng., 23(8), 596-610.   DOI   ScienceOn
2 Paya-Zaforteza, I., Yepes, V., Hospitaler, A. and Gonzalez-Vidosa, F. (2009), "$CO_{2}$ efficient design of reinforced concrete building frames", Eng. Struct., 31(7), 1501-1508.   DOI   ScienceOn
3 Paya-Zaforteza, I., Yepes, V., Hospitaler, A. and Gonzalez-Vidosa, F., (2010), "On the Weibull cost estimation of building frames designed by simulated annealing", Meccanica, 45(5), 693-704.   DOI
4 Perea, C., Alcala, J., Yepes, V., González-Vidosa, F. and Hospitaler, A. (2008), "Design of reinforced concrete bridge frames by heuristic optimization", Adv. Eng. Softw., 39(8), 676-688.   DOI   ScienceOn
5 Perea, C., Yepes, V., Alcala, J., Hospitaler, A. and Gonzalez-Vidosa, F. (2010), "A parametric study of optimum road frame bridges by threshold acceptance", Indian J. Eng. Mater. S., 17(6), 427-437.
6 Yepes, V., Alcala, J., Perea, C. and Gonzalez-Vidosa, F. (2008), "A parametric study of earth-retaining walls by simulated annealing", Eng. Struct., 30(3), 821-830.   DOI   ScienceOn
7 Yepes, V., Gonzalez-Vidosa, F., Alcalá, J. and Villalba, P. (2012), "$CO_{2}$-Optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy", J. Comp. Civil Eng., ASCE, 26(3), 378-386.   DOI
8 Adeli, H. and Sarma, K.C. (2006), Cost Optimization of Structures, John Wiley & Sons, Chichester, UK.
9 Awad, Z.K. and Yusaf, T. (2012), "Fibre composite railway sleeper design by using FE approach and optimization techniques", Struct. Eng. Mech., 41(2), 231-242.   DOI   ScienceOn
10 Balling, R.J. and Yao, X. (1997), "Optimization of reinforced concrete frames", J. Struct. Eng., ASCE, 123(2), 193-202.   DOI   ScienceOn
11 Bonet, J.L., Romero, M.L., Miguel, P.F. and Fernández, M.A. (2004), "A fast stress integration algorithm for reinforced concrete sections with axial loads and biaxial bending", Comput. Struct., 82(2-3), 213-225.   DOI   ScienceOn
12 Carbonell, A., Gonzalez-Vidosa, F. and Yepes, V. (2011), "Design of reinforced concrete road vault underpasses by heuristic optimization", Adv. Eng. Softw., 42(4), 151-159.   DOI   ScienceOn
13 Coello, C.A., Christiansen, A.D. and Santos, F. (1997), "A simple genetic algorithm for the design of reinforced concrete beams", Eng. Comput., 13(4), 185-196.   DOI   ScienceOn
14 CEN (2003), EN 1991-2: Eurocode 1. Basis of Design and Actions on Structures. Part 2: Traffic Loads on Bridges, Comite Europeen de Normalisation, Brussels, Belgium.
15 CEN (2004a), EN 1992-1-1: Eurocode 2. Design of Concrete Structures - Part 1-1: General Rules and Rules for Building, Comite Europeen de Normalisation, Brussels, Belgium.
16 CEN (2004b), EN 1998-1: Eurocode 8. Design of Structures for Earthquake Resistance - Part 1: General Rules, Seismic Actions and Rules for Buildings. Comite Europeen de Normalisation, Brussels, Belgium.
17 Cohn, M.Z. and Dinovitzer, A.S. (1994), "Application of structural optimization", J. Struct. Eng., ASCE, 120(2), 617-649.   DOI   ScienceOn
18 Dorigo, M., Maniezzo, V. and Colorni, A. (1996), "The ant system: optimization by a colony of cooperating agents", IEEE Trans. Syst. Man Cybern. Part B, 26(1), 29-41.   DOI   ScienceOn
19 Holland, J.H. (1975), Adaptation in Natural and Artificial systems, University of Michigan Press, Ann Arbor, USA.
20 Kaveh, A. and Sabzi, O. (2011), "A comparative study of two meta-heuristic algorithms for optimum design of reinforced concrete frames", Int. J. Civ. Eng., 9(3), 193-206.
21 Kennedy, J. and Eberhart, R. (1995), "Particle Swarm Optimization", IEEE International Conference on Neural Networks, IEEE Service Center, Piscataway, Perth, Australia, 1942-1948.
22 Khajehzadeh, M., Taha, M.R., El-Shafie, A. and Eslami, M. (2011), "Modified particle swarm optimization for optimum design of spread footing and retaining wall", J. Zhejiang Univ.-SCI A, 12(6), 415-427.   DOI
23 Kicinger, R., Arciszewski, T. and De Jong, K. (2005), "Evolutionary computation and structural design: A survey of the state-of-the-art", Comput. Struct., 83(23-24), 1943-1978.   DOI   ScienceOn
24 Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983), "Optimization by simulated annealing", Science, 220, 671-680.   DOI   ScienceOn
25 Liao, T.W., Egbelu, P.J., Sarker, B.R. and Leu, S.S. (2011), "Metaheuristics for project and construction management - A state-of-the-art review", Autom. Constr., 20(5), 491-505.   DOI   ScienceOn
26 Lee, E.H. and Park, J. (2011), "Structural design using topology and shape optimization", Struct. Eng. Mech., 38(4), 517-527.   DOI   ScienceOn
27 Lee, K.S. and Geem, Z. (2004), "A new structural optimization method based on the harmony search algorithm", Comput. Struct., 82(9-10), 781-798.   DOI   ScienceOn
28 Li, G., Lu, H. and Liu, X. (2010), "A hybrid simulated annealing and optimality criteria method for optimum design of RC buildings", Struct. Eng. Mech., 35(1), 19-35.   DOI   ScienceOn
29 Lignola, G.P., Prota, A., Manfredi, G. and Cosenza, E. (2007), "Deformability of reinforced concrete hollow columns confined with CFRP", ACI Struct. J., 104(5), 629-637.
30 Manterola, J. (2000), Bridges: volume IV. ETS Ingenieros Caminos, Madrid, Spain. (in Spanish)
31 Marti, J.V., Gonzalez-Vidosa, F., Yepes, V. and Alcala, J. (2013), "Design of prestressed concrete precast road bridges with hybrid simulated annealing", Eng. Struct., 48, 342-352.   DOI   ScienceOn
32 Martinez, F.J., Gonzalez-Vidosa, F., Hospitaler, A. and Alcalá, J. (2011), "Design of tall bridge piers by ant colony optimization", Eng. Struct., 33(8), 2320-2329.   DOI   ScienceOn
33 Martinez, F.J., Gonzalez-Vidosa, F., Hospitaler, A. and Yepes, V. (2010), "Heuristic optimization of RC bridge piers with rectangular hollow sections", Comput. Struct., 88(5-6), 375-386.   DOI   ScienceOn
34 Martínez, P., Martí, P. and Querin, O.M. (2007), "Growth method for size, topology, and geometry optimization of truss structures", Struct. Multidisc. Optim., 33(1), 13-26.
35 Ministerio de Fomento (2007). IAPF: Code for Actions for the Design of Railway Bridges. Ministerio de Fomento, Madrid, Spain. (in Spanish)
36 Ministerio de Fomento (2008), EHE: Code of Structural Concrete, Ministerio de Fomento, Madrid, Spain. (in Spanish)