• 제목/요약/키워드: Parametric Optimization

Search Result 362, Processing Time 0.026 seconds

SSI effects on seismic behavior of smart base-isolated structures

  • Shourestani, Saeed;Soltani, Fazlollah;Ghasemi, Mojtaba;Etedali, Sadegh
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.161-174
    • /
    • 2018
  • The present study investigates the soil-structure interaction (SSI) effects on the seismic performance of smart base-isolated structures. The adopted control algorithm for tuning the control force plays a key role in successful implementation of such structures; however, in most studied carried out in the literature, these algorithms are designed without considering the SSI effect. Considering the SSI effects, a linear quadratic regulator (LQR) controller is employed to seismic control of a smart base-isolated structure. A particle swarm optimization (PSO) algorithm is used to tune the gain matrix of the controller in both cases without and with SSI effects. In order to conduct a parametric study, three types of soil, three well-known earthquakes and a vast range of period of the superstructure are considered for assessment the SSI effects on seismic control process of the smart-base isolated structure. The adopted controller is able to make a significant reduction in base displacement. However, any attempt to decrease the maximum base displacement results in slight increasing in superstructure accelerations. The maximum and RMS base displacements of the smart base-isolated structures in the case of considering SSI effects are more than the corresponding responses in the case of ignoring SSI effects. Overall, it is also observed that the maximum and RMS base displacements of the structure are increased by increasing the natural period of the superstructure. Furthermore, it can be concluded that the maximum and RMS superstructure accelerations are significant influenced by the frequency content of earthquake excitations and the natural frequency of the superstructure. The results show that the design of the controller is very influenced by the SSI effects. In addition, the simulation results demonstrate that the ignoring the SSI effect provides an unfavorable control system, which may lead to decline in the seismic performance of the smart-base isolated structure including the SSI effects.

Active Control of Propagated Noise through Opening of Enclosures Surrounding a Noise Source (음원을 둘러싼 인클로저 개구부를 통해 전파되는 소음의 능동 제어)

  • Lee, Hanwool;Hong, Chinsuk;Jeong, Weuibong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.4
    • /
    • pp.223-231
    • /
    • 2015
  • Enclosures are widely used to alleviate the contribution of machinery noise. It has been long concerned with the noise transmission through the access openings of the enclosures. In this study, we investigate active noise control technology for reduction of the transmission. A numerical model based on the acoustic boundary element method is first established. Using the numerical model, the acoustic transfer functions of the field points over the opening to the primary source at arbitrary locations are estimated. The feedforward control to minimize the acoustic power through the opening is then numerically implemented. The controller drives the secondary source to destructively interfere the noise transmission through the opening. Finally, a parametric study is conducted to evaluate the effects of the location and the number of the microphones on the control performance. Furthermore, the effects of the location of the secondary source on the performance of active noise control are investigated. It is followed that the control system implemented in this study leads to a significant reduction of about 31.5 dB in the sound power through the opening using only one secondary source located at the optimized position.

Optimal Design of Robust Quantitative Feedback Controllers Using Linear Programming and Genetic Algorithms

  • Bokharaie, Vaheed S.;Khaki-Sedigh, Ali
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.428-432
    • /
    • 2003
  • Quantitative Feedback Theory (QFT) is one of most effective methods of robust controller design and can be considered as a suitable method for systems with parametric uncertainties. Particularly it allows us to obtain controllers less conservative than other methods like $H_{\infty}$ and ${\mu}$-synthesis. In QFT method, we transform all the uncertainties and desired specifications to some boundaries in Nichols chart and then we have to find the nominal loop transfer function such that satisfies the boundaries and has the minimum high frequency gain. The major drawback of the QFT method is that there is no effective and useful method for finding this nominal loop transfer function. The usual approach to this problem involves loop-shaping in the Nichols chart by manipulating the poles and zeros of the nominal loop transfer function. This process now aided by recently developed computer aided design tools proceeds by trial and error and its success often depends heavily on the experience of the loop-shaper. Thus for the novice and First time QFT user, there is a genuine need for an automatic loop-shaping tool to generate a first-cut solution. In this paper, we approach the automatic QFT loop-shaping problem by using an algorithm involving Linear Programming (LP) techniques and Genetic Algorithm (GA).

  • PDF

Comparative Study on Resistance Performance of Icebreaking Cargo Vessel according to Hull Form Variation by using Synthetic Ice and Refrigerated Ice (합성얼음과 냉동얼음을 이용한 선형을 변화시킨 쇄빙상선의 저항특성 연구)

  • Lee, Seung-Ho;Kim, Moon-Chan;Chun, Ho-Hwan;Shin, Byung-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.350-358
    • /
    • 2010
  • The present paper deals with the comparative study of resistance performance with refrigerated ice and synthetic ice according to the variation of hull form characteristics. The resistance test has been conducted in pack ice condition in each concentration condition. Stem angle has been chosen as main parameters for the variation of hull form characteristics. The correlation of performance between with the refrigerated ice and with the synthetic ice has been shown according to the variation for stem angles. The present study show the possibility of ice test in general towing tank with synthetic ice for the time-consuming research such as hull form optimization although that is confined in pack ice condition. The more parametric study for the properties of synthetic ice is expected to be conducted to have more close correspondence for the test results of refrigerated ice in near future.

Effect of Geometric Variation on Aerodynamic Characteristics of a Shrouded Tail Rotor (덮개꼬리로부터의 형상변화에 따른 공력 특성에 관한 연구)

  • Lee, H.-D.;Kang, H.-J.;Kwon, O.-J.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.9-17
    • /
    • 2005
  • In the early stage of helicopter design, an optimal configuration is usually determined after a numerous parametric study about the aerodynamic performance due to geometric variation. In order to improve the aerodynamic performance of a shrouded tail rotor, optimization of the tip clearance gap between blade and shroud, the blade planform shape, and the arrangement of blade spacing is required. In the present study, the aerodynamic performance characteristics of a shrouded tail rotor due to geometric variation was investigated by using an inviscid compressible unstructured mesh flow solver for rotary wings.

A Study on the Relation of the Design and Operating Economy for Bulk Carrier (散積貨物船의 設計와 運航經濟性과의 評價에 關한 硏究)

  • 박명규;최학선
    • Journal of the Korean Institute of Navigation
    • /
    • v.16 no.2
    • /
    • pp.1-19
    • /
    • 1992
  • A Study for the relation between design parameters in conceptual stage and freight cost in operation of ocean-going bulk carrier was presented by economic criterial. Ship design procedure was followed to traditional method and programmed. The measure of merit is the Required Freight Rate(RFR). Parametric method used insteady of optimization technique due to easy to illustrate the results. Calculation results to the relation ship dimension, speed and operating cost in this paper show the influence of oil price is very important. Particularly, when oil price estimated as go up, owner choose a ship which lengh is long , breadth/draft is near 2.0 and speed is low. This program is useful for shipyard, consultant officer and owner all together.

  • PDF

Optimization of Cleaning Parameters in Cryogenic $CO_2$ Cleaning Process (극저온 $CO_2$ 세정공정의 세정인자 최적화)

  • Lee, Seong-Hoon;Seok, Jong-Won;Kim, Pil-Kee;Oh, Seung-Hee;Seok, Jong-Hyuk;Oh, Byung-Joon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.9
    • /
    • pp.109-115
    • /
    • 2008
  • The cleaning process of contaminant particles adhering to the microchips, integrated circuits (ICs) or the like is essential in modern microelectronics industry. In the cleaning process particularly working with the application of inert gases, the removal of contaminant particles of submicron scale is very difficult because the particles are prone to reside inside the boundary layer of the working fluid, The use of cryogenic $CO_2$ cleaning method is increasing rapidly as an alternative to solve this problem. In contrast to the merits of high efficiency of this process in the removal of minute particles compared to the others, even fundamental parametric studies for the optimal process design in this cleaning process are hardly done up to date, In this study, we attempted to measure the cleaning efficiency with the variations of some principal parameters such as mass flow rate, injection distance and angle, and tried to draw out optimal cleaning conditions by measuring and evaluating an effective cleaning width called $d_{50}$.

The Design of Granular-based Radial Basis Function Neural Network by Context-based Clustering (Context-based 클러스터링에 의한 Granular-based RBF NN의 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1230-1237
    • /
    • 2009
  • In this paper, we develop a design methodology of Granular-based Radial Basis Function Neural Networks(GRBFNN) by context-based clustering. In contrast with the plethora of existing approaches, here we promote a development strategy in which a topology of the network is predominantly based upon a collection of information granules formed on a basis of available experimental data. The output space is granulated making use of the K-Means clustering while the input space is clustered with the aid of a so-called context-based fuzzy clustering. The number of information granules produced for each context is adjusted so that we satisfy a certain reconstructability criterion that helps us minimize an error between the original data and the ones resulting from their reconstruction involving prototypes of the clusters and the corresponding membership values. In contrast to "standard" Radial Basis Function neural networks, the output neuron of the network exhibits a certain functional nature as its connections are realized as local linear whose location is determined by the values of the context and the prototypes in the input space. The other parameters of these local functions are subject to further parametric optimization. Numeric examples involve some low dimensional synthetic data and selected data coming from the Machine Learning repository.

Optimization of the Hydro-Forming Process for Aluminum Bumper Beams by Using Finite Element Analysis (유한요소법을 이용한 하이드로포밍 알루미늄 범퍼빔의 성형공정 최적화)

  • Son, Wonsik;Yum, Sanghyuk;Lee, Jihoon;Kim, Seungmo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.410-417
    • /
    • 2017
  • Hydro-forming is being employed increasingly to realize lightweight vehicular parts. The bumper beam produced by this process weighs 30% less than the conventional products with equal stiffness. However, hydro-forming involves complex parameters to obtain the target geometry and low residual stress. Parametric studies are conducted using finite element analysis to obtain optimized process conditions. Through these numerical approaches, the internal and holding pressures and feeder forward stroke along the extruded direction are optimized to achieve low residual stress and to minimize springback. The numerical results are verified by experimental observations made by employing a three-dimensional laser scanner. The numerical and experimental results are compared in terms of the springback. Both results show similar tendencies.

Investigation of carbon supported pt nano catalyst preparation by the polyol process for fuel cell applications (폴리올 프로세스를 통한 연료전지용 백금 촉매 제조)

  • Oh, Hyung-Seok;Kim, Han-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.200-203
    • /
    • 2007
  • Parametric investigation of the polyol process for the preparation of carbon supported Pt nano particles as catalysts for fuel cells was carried out. It was found that the concentration of glycolate anion, which is a function of pH, plays an important role in controlling Pt particle size and loading on carbon. It was observed that Pt loading decreased with increasing alkalinity of the solution. As evidenced by zeta potential measurement, this was mainly due to poor adsorption or repulsive forces between the metal colloids and the supports. In order to modify the conventional polyol process, the effect of the gas purging conditions on the characteristics of Pt/C was examined. By the optimization of the gas environment during the reaction, it was possible to obtain high loading of 39.5wt% with a 2.8 nm size of Pt particle. From the single cell test, it was found that operating in ambient $O_{2}$ at 70oC can deliver high performance of more than 0.6 V at 1.44 A $cm^{-2}$.

  • PDF