• Title/Summary/Keyword: Parameters Sensitivity

Search Result 2,078, Processing Time 0.028 seconds

A Study on the Static Sensitivity Analysis Algorithm Using the Transfer of Stiffness Coefficient (강성계수의 전달을 이용한 정적 감도해석 알고리즘에 관한 연구)

  • Choi, Myung-Soo
    • Journal of Power System Engineering
    • /
    • v.5 no.4
    • /
    • pp.82-89
    • /
    • 2001
  • To design a structural or a mechanical system with the best performance, the main procedure of a typical design usually consists of repeated modifications of design parameters and the investigation of the system response for each set of these parameters. But this procedure requires much time, effort and experience. Sensitivity analysis can provide systematic information for improving performance of a system. The author has studied on the development of the structural analysis algorithm and suggested recently the transfer stiffness coefficient method(TSCM). This method is very suitable algorithm to a personal computer because the concept of the TSCM is based on the transfer of the nodal stiffness coefficients which are related to force and displacement vectors at each node. In this paper, a new sensitivity analysis algorithm using the concept of the TSCM is formulated for the computation of state variable sensitivity in static problems. The trust of the proposed algorithm is confirmed through the comparison with the computation results using existent sensitivity analysis algorithm and reanalysis for computation models.

  • PDF

Sensitivity Analysis of Input Parameters for a Dynamic Food-Chain Model DYNACON (동적섭식경로모델 DYNACON에 대한 입력변수의 민감도분석)

  • Hwang, Won-Tae;Lee, Geun-Chang;Han, Moon-Hee;Cho, Gyu-Seong
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.1
    • /
    • pp.11-19
    • /
    • 2000
  • The sensitivity analysis of input parameters for a dynamic food chain model DYNACON was conducted as a function of deposition date for the long-lived radionuclides $(^{137}Cs,\;^{90}Sr)$. Also, the influence of input parameters for the short and long-terms contamination of selected foodstuffs (cereals, leafy vegetables, milk) was investigated. The input parameters were sampled using the LHS technique, and their sensitivity indices represented as PRCC. The sensitivity index was strongly dependent on contamination period as well as deposition date. In case of deposition during the growing stages of plants, the input parameters associated with contamination by foliar absorption were relatively important in long-term contamination as well as short-term contamination. They were also important in short-term contamination in case of deposition during the non-growing stages. In long-term contamination, the influence of input parameters associated with foliar absorption decreased, while the influence of input parameters associated with root uptake increased. These phenomena were more remarkable in case of the deposition of non-growing stages than growing stages, and in case of $^{90}Sr$ deposition than $^{137}Cs$ deposition. In case of deposition during growing stages of pasture, the input parameters associated with the characteristics of cattle such as feed-milk transfer factor and daily intake rate of cattle were relatively important in contamination of milk.

  • PDF

A Study on the Physical Parameters of Amorphous Silicon using a Two-Dimensional Device Simulator(TFT2DS) (이차원 소자 시뮬레이터를 이용한 비정질 실리콘 물성 파라메타에 관한 연구)

  • 곽지훈;최종선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.168-171
    • /
    • 1997
  • TFT2DS was developed to provide the usefulness as an analytic and design tool. The static characteristics of a-Si:H TFTs demonstrated a good agreement between simulated and measured data. This paper shows that TFT2DS can optimize the physical parameters of a-Si:H through sensitivity simulations and compute the static characteristics of a-Si:H TFTs. Moreover, through the sensitivity study of the parameters, it is shown that the optimizations of both the physical parameters of a-Si:H and the parameters of a-Si:H deposition, which must be inter-related, might be possibl.

  • PDF

Estimation of Muscle-tendon Model Parameters Based on a Numeric Optimization (최적화기법에 의한 근육-건 모델 파라미터들의 추정)

  • Nam, Yoon-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.122-130
    • /
    • 2009
  • The analysis of human movement requires the knowledge of the Hill type muscle parameters, the muscle-tendon and moment arm length change as a function of joint angles. However, values of a subject's muscle parameters are very difficult to identify. It turns out from a sensitivity analysis that the tendon slack length and maximum muscle force are the two critical parameters among the Hill-type muscle model. Therefore, it could be claimed that the variation of the tendon slack length and maximum muscle force from the Delp's reference data will change the muscle characteristics of a subject remarkably. A numeric optimization method to search these tendon parameters specific to a subject is proposed, and the accuracy of the developed algorithm is evaluated through a numerical simulation.

Confidence region of identified parameters and optimal sensor locations based on sensitivity analysis

  • Kurita, Tetsushi;Matsui, Kunihito
    • Structural Engineering and Mechanics
    • /
    • v.13 no.2
    • /
    • pp.117-134
    • /
    • 2002
  • This paper presents a computational method for a confidence region of identified parameters which are affected by measurement noise and error contained in prescribed parameters. The method is based on sensitivities of the identified parameters with respect to model parameter error and measurement noise along with the law of error propagation. By conducting numerical experiments on simple models, it is confirmed that the confidence region coincides well with the results of numerical experiments. Furthermore, the optimum arrangement of sensor locations is evaluated when uncertainty exists in prescribed parameters, based on the concept that square sum of coefficients of variations of identified results attains minimum. Good agreement of the theoretical results with those of numerical simulation confirmed validity of the theory.

Sensitivity Analysis of Hydrogeologic Parameters by Groundwater Table Fluctuation Model in Jeju Island (지하수위 변동 해석모델을 이용한 제주지역의 수리지질 매개변수 민감도 분석)

  • Kim, Nam Won;Kim, Youn Jung;Chung, Il-Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1409-1420
    • /
    • 2014
  • In this work, we have carried out a sensitivity analysis of hydrogeologic parameters such as reaction factor and drainable pore space in groundwater table fluctuation model and have found characteristics of parameter distribution according to the altitude. We found that drainable pore space which is hydrogeologic parameter of aquifer didn't show any trend with altitude while reaction factor which is groundwater flow characteristic showed clear trend with altitude. To find a sensitivity of parameters, we compared RMSE of estimated groundwater recharges by using the mean value and linear relationship of parameters. As results, the linear equation derived for entire watersheds could be applied to estimate parameters for ungauged watershed. Furthermore, the features of parameter distribution can be used to predict hydrogeologic parameter in ungauged watersheds and it is expected that those features could be used for a basic data for groundwater modeling.

Sensitivity analysis of the plastic hinge region in the wall pier of reinforced concrete bridges

  • Babaei, Ali;Mortezaei, Alireza;Salehian, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.675-687
    • /
    • 2019
  • As the bridges are an integral part of the transportation network, their function as one of the most important vital arteries during an earthquake is fundamental. In a design point of view, the bridges piers, and in particular the wall piers, are considered as effective structural elements in the seismic response of bridge structures due to their cantilever performance. Owing to reduced seismic load during design procedure, the response of these structural components should be ductile. This ductile behavior has a direct and decisive correlation to the development of plastic hinge region at the base of the wall pier. Several international seismic design codes and guidelines have suggested special detailing to assure ductile response in this region. In this paper, the parameters which affect the length of plastic hinge region in the reinforced concrete bridge with wall piers were examined and the sensitivity of these parameters was evaluated on the length of the plastic hinge region. Sensitivity analysis was accomplished by independently variable parameters with one standard deviation away from their means. For this aim, the Monte Carlo simulation, tornado diagram analysis, and first order second moment method were used to determine the uncertainties associated with analysis parameters. The results showed that, among the considered design variables, the aspect ratio of the pier wall (length to width ratio) and axial load level were the most important design parameters in the plastic hinge region, while the yield strength of transverse reinforcements had the least effect on determining the length of this region.

A Study on the Sensitivity Analysis of Line Source Air Quality Models (移動汚染源에 대한 大氣擴散模型의 感應度 分析에 관한 硏究 (HIWAY2, PAL, CALINE3 模型을 對象으로))

  • 김선태;김병태;김정욱
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 1989
  • The sensitivity analysis is a method to quantify to what extent the output of a model changes with the values of input parameters. This will lead to increase model accuracy through measurement validation. Three line source air quality models, HIWAY 2, PAL, and CALINE 3 were selected for this study. The input parameters analysed included wind speed, wind direction, stability, emission rate, mixing height, receptor distance, initial dispersion coefficient, surface roughness, and averaging time. It turned out that PAL model generally showed higher concentration than other two models, and that between CALINE 3 and HIWAY 2, CALINE 3 showed higher concentration than HIWAY 2 model near the line sources, but beyond a certain downwind distances HIWAY 2 model showed higher concentration. The modesl were very sensitive to wind speed especially in the range of 0 $\sim$ 1 m/s and to wind direction near the parallel wind to streets. In case of emission rate, the output concentration was directly proportional to these input parameters. And the sensitivity of the input parameters such as stability, mixing height, initial dispersion coefficient, surface roughness, and averaging time were not very significant.

  • PDF

Study on the Application Limits and Sensitivity Analysis for the Parameters of Time of Concentration (도달시간 산정공식의 입력변수 적용범위 및 민감도 분석)

  • 김선주;강상진;이광야;박재흥
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.6
    • /
    • pp.72-82
    • /
    • 2000
  • Many lot of books introduce the methods to calculate the time of concentration, and these are described as various forms of formulas. There are few formulas appropriate for our basin characteristics Therefone, there are problems to make excessive or less estimation when these formulas are used. To solve these problems, comparison of formulas and sensitivity analysis for them were made with converting parameters. Finally, Time of concentration was estimated to derive Application limits for 3 watersheds by standardized formulas. In the case of input parameters analysis, SCS formula has the highest value by the length, Kerby by the height and SCS by the slope, respectively, while Kraven formula has the lowest value among them. Concerning the relative sensitivity by Taylor series, the time of concentration showed the constant effect while increasing of the length and slope, and the length was more sensitive than the slope in parameters. Finally the standardization formula developed in this study was applied to derive application limits for 3 watersheds(total 17 subbasins). In this case, Rziha(8 subbasins) and SCS(9 subbasins) formulas were the most similar to observed data of total 17 subbasins respectively. Application limits were about 300~500$\textrm{km}^2$ area, 30~60km length and under 0.01 slope for Rziha formula and about 100~200$\textrm{km}^2$ area, 10~30km length, and over 0.01 slope for SCS formula, respectively.

  • PDF

Calibration and Sensitivity Analysis of the RICEWQ Model (RICEWQ 모형의 보정 및 민감도 분석)

  • Chung, Sang-Ok;Park, Ki-Jung;Son, Seung-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.2
    • /
    • pp.3-10
    • /
    • 2008
  • The main objectives of this study are to calibrate the RICEWQ model with Korean field data and then analyse the sensitivity of the parameters to identify sensitive parameters. The RICEWQ is widely used to predict pesticide fate in a paddy plot. An experimental paddy plot of 0.2 ha($100{\times}20\;m$) at Seobyeon-dong, Daegu, Korea was selected, and field observations for water and pesticide balance were performed from 4 June to 2 September 2006. The molinate, which is a herbicide widely used for weed control in rice culture, was selected. The RICEWQ model was successfully calibrated both for the water and pesticide mass balance. The calibrated model showed a RMSE of 0.537 cm for ponded water depths and a RMSE of 0.036 mg/L for the molinate concentrations in the ponded water. The most sensitive parameters for molinate concentrations in ponded water were the metabolism degradation rate in water, volatilization coefficient, and release rate for slow release formulation. In contrast, the RICEWQ model was not sensitive to parameters such as hydrolysis degradation rate in water and degradation rate in unsaturated soil.