• Title/Summary/Keyword: Parameters Sensitivity

Search Result 2,066, Processing Time 0.027 seconds

Sensitivity Analysis of ILLUDAS Model Parameters Based on Rainfall Conditions (강우조건이 ILLUDAS 모형 매개변수의 민감도에 미치는 영향 분석)

  • Lee, Jong Tae;Kim, Tae Hwa
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.748-757
    • /
    • 2004
  • In this study, we analyzed the sensitivity of parameters which affect the result of ILLUDAS model, in the various rainfall conditions. The three basins including Namgaja, Kings creek, Gray haven were selected for this research. The rainfall conditions are considered in terms of the rainfall frequency, the duration and the distribution. In most cases, the impermeability area ratio, the sewer slope, and the sewer roughness coefficient give more significant effects on the results than others. The results show that as increasing the rainfall frequency, the sensitivity of the parameters, sewer slope and roughness coefficient are rised, while the impermeability area ratio is decreasing. And also, for the duration of rainfall, the impermeability area ratio's sensitivity shows similar tendency. In case of the rainfall distribution, the parameters of the sewer roughness and the impermeability area ratio show more sensitive in Huff distribution. Especially, The impermeability area ratio is the most sensitive parameter in Central blocking and Yen & Chow distributions respectively.

The Sensitivity Analysis of Parameters of Urban Runoff Models due to Variations of Basin Characteristics (I) - Development of Sensitivity Analysis Method - (유역특성 변화에 따른 도시유출모형의 매개변수 민감도분석(I) -민감도분석방법의 개발-)

  • Seo, Gyu-U;Jo, Won-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.243-252
    • /
    • 1998
  • In this study, the new dimensionless values were defined and proposed to determine the parameters of urban runoff models based on the relative sensitivity analysis. Also, the sensitivity characteristics of each parameter were investigate. In order to analyze the parameter sensitivities of each model, total runoff ratio, peak runoff ratio, runoff sensitivity ratio, sensitivity ratio of total runoff, and sensitivity ratio of peak runoff were defined. $$Total\;runoff\;ratio(Q_{TR})\;=\;\frac{Total\;runoff\;of\;corresponding\;step}{Maximum\;total\;runoff}$$$$Peak\;runoff\;ratio(Q_{PR})\;=\;\frac{Peak\;runoff\;of\;corresponding\;step}{Maximum\;peak\;runoff}$$$$Runoff\;sensitivity\;ratio(Q_{SR})\;=\;\frac{Q_{TR}}{Q_{PR}}$$ And for estimation of sensitivity ratios based on the scale of basin area, rainfall distributions and rainfall durations in ILLUDAS & SWMM, the reasonable ranges of parameters were proposed.

  • PDF

Hydraulic Parameter Evaluation by Sensitivity Analysis of Constant and Variable Rate Pump Test in Leaky Fractal Aquifer (누수성 프락탈 대수층내의 일정 또는 다단계 양수시험의 민감성 분석에 의한 수리상수 결정)

  • 함세영
    • The Journal of Engineering Geology
    • /
    • v.4 no.3
    • /
    • pp.311-319
    • /
    • 1994
  • This paper presents a sensitivity analysis to obtain best fit of hydraulic parameters of leaky fractal aquifer. The sensitivity analysis uses the least squares method. The hydraulic parameters (generalized transmissivity and generalized storage coefficient) can be easily determined by the sensitivity analysis for various flow dimensions and different values of the leakage factor. Furthermore, the sensitivity analysis was applied to variable-rate pump tast at several abstraction wells, A computer program was developed to evaluate the hydraulic parameters by the sensitivity analysis.

  • PDF

Ride Sensitivity Analysis of a Train Model with Non-linear Suspension Elements (비선형 현가요소를 가진 철도차량의 승차감 민감도 해석)

  • Tak, Tae-oh;Kim, Myung-hun
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.233-240
    • /
    • 1998
  • In this study, ride sensitivity analysis of train with non-linear suspension elements is performed. Non-linear characteristics of springs and dampers for primary and secondary suspensions of a train is parameterized. Equation of motion of the train model is derived, and using the direct differentiation method, sensitivity equations are obtained. For a nominal ride quality performance index, sensitivity analysis with respect to various design parameters regarding non-linear suspension parameters is carried out.

  • PDF

Structural Dynamics Optimization by Second Order Sensitivity with respect to Finite Element Parameter (유한요소 구조 인자의 2차 민감도에 의한 동적 구조 최적화)

  • Kim, Yong-Yun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.8-16
    • /
    • 2006
  • This paper discusses design sensitivity analysis and its application to a structural dynamics modification. Eigenvalue derivatives are determined with respect to the element parameters, which include intrinsic property parameters such as Young's modulus, density of the material, diameter of a beam element, thickness of a plate element, and shape parameters. Derivatives of stiffness and mass matrices are directly calculated by derivatives of element matrices. The first and the second order derivatives of the eigenvalues are then mathematically derived from a dynamic equation of motion of FEM model. The calculation of the second order eigenvalue derivative requires the sensitivity of its corresponding eigenvector, which are developed by Nelson's direct approach. The modified eigenvalue of the structure is then evaluated by the Taylor series expansion with the first and the second derivatives of eigenvalue. Numerical examples for simple beam and plate are presented. First, eigenvalues of the structural system are numerically calculated. Second, the sensitivities of eigenvalues are then evaluated with respect to the element intrinsic parameters. The most effective parameter is determined by comparing sensitivities. Finally, we predict the modified eigenvalue by Taylor series expansion with the derivatives of eigenvalue for single parameter or multi parameters. The examples illustrate the effectiveness of the eigenvalue sensitivity analysis for the optimization of the structures.

ESTIMATION AND SENSITIVITY OF GOMPERTZ PARAMETERS WITH MORTALITY DECELERATION RATE

  • PITCHAIMANI M.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.311-320
    • /
    • 2005
  • Studies in the evolutionary biology of aging require good estimates of the age-dependent mortality rate coefficient (one of the Gompertz parameters). In this paper we introduce an alternative algorithm for estimating this parameter. And we discuss the sensitivity of the estimates to changes in the other model parameters.

Analysis of Response of Lumped Mass System Using Sensitivity Method in Frequency Domain (주파수 영역 민감도 방법을 이용한 집중 질량 구조물의 응답 해석)

  • Baek, Moon-Yeol;Kee, Chang-Doo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.164-169
    • /
    • 1997
  • The aim of this paper is to present some results of sensitivity analysis in frequency domain. The sensitivity fonctions in frequency domain is not depend on the external excitation but depend on the frequency of the system's resonance. The sensitivity functions are determined as function of partial derivatives of system transfer functions taken with respect to system design parameters. The logarithmic sensitivity function is the dimensionless sensitivity funciton available, making it useful to compare the influence of various parameters on system variables. Two degree of fredom system is used to illustrate the procedure for sensitivity analysis proposed in this paper.

  • PDF

Sensitivity Analysis on the Stability of a Submarine Concerning its Design Parameters (잠수함의 설계 인자들에 대해 안정성 지수가 가지는 민감도 해석)

  • Yeo Dong-Jin;Yoon Hyeon-Kyu;Kim Yeon-Gyu;Lee Chang-Min
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.4 s.148
    • /
    • pp.521-528
    • /
    • 2006
  • In this study, we developed a new systematic approach to assess the influence of geometric parameter change on the horizontal and vertical stability indices. To do this, three phases of sensitivity analyses were carried out. First, typical geometric parameters were defined and their effects on hydrodynamic coefficients were assessed by the Sensitivity Analysis (SA) of the indirect method. Second, the effects of hydrodynamic coefficients on the stability indices were calculated. Finally, the sensitivities of geometric parameters on the stability indices were obtained by merging the outputs of two phases using chain rule. The developed approach cau contribute to a submarine designer to determine geometric parameters satisfying pre-requirements about stability systematically.

Sensitivity Study of Smoothed Particle Hydrodynamics

  • Kim, Yoo-Il;Nam, Bo-Woo;Kim, Yong-Hwan
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.4
    • /
    • pp.29-54
    • /
    • 2007
  • Systematic sensitivity analysis of smoothed particle hydrodynamics method (SPH), a gridless Lagrangian particle method, was carried out in this study. Unlike traditional grid-based numerical schemes, systematic sensitivity study for computational parameters is very limited for SPH. In this study, the effect of computational parameters in SPH simulation is explored through two-dimensional dam-breaking and sloshing problem. The parameters to be considered are the speed of sound, the type of kernel function, the frequency of density re-initialization, particle number, smoothing length and pressure extraction method. Through a series of numerical test, detailed information was obtained about how SPH solution can be more stabilized and improved by adjusting computational parameters.

The Sensitivity Analysis of Parameters of Urban Runoff Models due to Variations of Basin Characteristics (II) - Model Calibration and Application - (유역특성 변화에 따른 도시유출모형의 매개변수 민감도분석(II) -모형의 검정 및 적용-)

  • Seo, Gyu-U;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.253-267
    • /
    • 1998
  • In this study, ILLUDAS and SWMM were applied for Dongsucheon basin, Incheon and Test basin, Cheongju. The main parameters (II, IA, IS, SI, SR, SS) which are included in those of each model depending on runoff results were determined, and sensitivity ratios were estimated in order to evaluate and compare the characteristics of each modEL. Total runoff ratio for almost parameters turned out to have a linear relation to the rainfall durations and the scale of basin area but have nothing to do with rainfall distributions. Sensitivity ratios turned out to have a linear relation for the infiltration and soil parameters of ILLUDAS as well as all parameters of SWMM. ronoff sensitivity ratios for almost parameters were smaller than 1.0 because the impacts of total runoff were bigger than those of peak runoff. And runoff sensitivity ratio was equal to 1.0 for the roughness coefficient of SWMM. Total runoff ratio, peak runoff ratio and runoff sensitivity ratio for the selected parameters of those models were presented asthe tables and figures according to the scale of basin area, rainfall durations such as 60, 120, and 180 minutes and Huff's 4th quartiles rainfall distributions. Keywords : ILLUDAS, SWMM, parameter, sensitivity analysis, sensitivity ratio.

  • PDF