• Title/Summary/Keyword: Parameters Optimization

Search Result 3,253, Processing Time 0.036 seconds

Multi-camera Calibration Method for Optical Motion Capture System (광학식 모션캡처를 위한 다중 카메라 보정 방법)

  • Shin, Ki-Young;Mun, Joung-H.
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.6
    • /
    • pp.41-49
    • /
    • 2009
  • In this paper, the multi-camera calibration algorithm for optical motion capture system is proposed. This algorithm performs 1st camera calibration using DLT(Direct linear transformation} method and 3-axis calibration frame with 7 optical markers. And 2nd calibration is performed by waving with a wand of known length(so called wand dance} throughout desired calibration volume. In the 1st camera calibration, it is obtained not only camera parameter but also radial lens distortion parameters. These parameters are used initial solution for optimization in the 2nd camera calibration. In the 2nd camera calibration, the optimization is performed. The objective function is to minimize the difference of distance between real markers and reconstructed markers. For verification of the proposed algorithm, re-projection errors are calculated and the distance among markers in the 3-axis frame and in the wand calculated. And then it compares the proposed algorithm with commercial motion capture system. In the 3D reconstruction error of 3-axis frame, average error presents 1.7042mm(commercial system) and 0.8765mm(proposed algorithm). Average error reduces to 51.4 percent in commercial system. In the distance between markers in the wand, the average error shows 1.8897mm in the commercial system and 2.0183mm in the proposed algorithm.

Parameter Optimization and Uncertainty Analysis of the NWS-PC Rainfall-Runoff Model Coupled with Bayesian Markov Chain Monte Carlo Inference Scheme (Bayesian Markov Chain Monte Carlo 기법을 통한 NWS-PC 강우-유출 모형 매개변수의 최적화 및 불확실성 분석)

  • Kwon, Hyun-Han;Moon, Young-Il;Kim, Byung-Sik;Yoon, Seok-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.383-392
    • /
    • 2008
  • It is not always easy to estimate the parameters in hydrologic models due to insufficient hydrologic data when hydraulic structures are designed or water resources plan are established. Therefore, uncertainty analysis are inevitably needed to examine reliability for the estimated results. With regard to this point, this study applies a Bayesian Markov Chain Monte Carlo scheme to the NWS-PC rainfall-runoff model that has been widely used, and a case study is performed in Soyang Dam watershed in Korea. The NWS-PC model is calibrated against observed daily runoff, and thirteen parameters in the model are optimized as well as posterior distributions associated with each parameter are derived. The Bayesian Markov Chain Monte Carlo shows a improved result in terms of statistical performance measures and graphical examination. The patterns of runoff can be influenced by various factors and the Bayesian approaches are capable of translating the uncertainties into parameter uncertainties. One could provide against an unexpected runoff event by utilizing information driven by Bayesian methods. Therefore, the rainfall-runoff analysis coupled with the uncertainty analysis can give us an insight in evaluating flood risk and dam size in a reasonable way.

Lifetime Reliability Based Life-Cycle Cost-Effective Optimum Design of Steel Bridges (생애 신뢰성에 기초한 강교의 LCC최적설계)

  • Lee, Kwang Min;Cho, Hyo Nam;Cha, CheolJun;Kim, Seong Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.75-89
    • /
    • 2006
  • This paper presents a practical and realistic Life-Cycle Cost (LCC) optimum design methodology of steel bridges considering time effect of bridge reliability under environmental stressors such as corrosion and heavy truck traffics. The LCC functions considered in the LCC optimization consist of initial cost, expected life-cycle maintenance cost and expected life-cycle rehabilitation costs including repair/replacement costs, loss of contents or fatality and injury losses, road user costs, and indirect socio-economic losses. For the assessment of the life-cycle rehabilitation costs, the annual probability of failure which depends upon the prior and updated load and resistance histories should be accounted for. For the purpose, Nowak live load model and a modified corrosion propagation model considering corrosion initiation, corrosion rate, and repainting effect are adopted in this study. The proposed methodology is applied to the LCC optimum design problem of an actual steel box girder bridge with 3 continuous spans (40 m+50 m+40 m=130 m), and various sensitivity analyses of types of steel, local corrosion environments, average daily traffic volume, and discount rates are performed to investigate the effects of various design parameters and conditions on the LCC-effectiveness. From the numerical investigation, it has been observed that local corrosion environments and the number of truck traffics significantly influence the LCC-effective optimum design of steel bridges, and thus realized that these conditions should be considered as crucial parameters for the optimum LCC-effective design.

Study of 68Ga Labelled PET/CT Scan Parameters Optimization (68Ga 표지 PET/CT 검사의 최적화된 매개변수에 대한 연구)

  • In Suk Kwak;Hyuk Lee;Si Hwal Kim;Seung Cheol Moon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.27 no.2
    • /
    • pp.111-127
    • /
    • 2023
  • Purpose: Gallium-68 (68Ga) is increasingly used in nuclear medicine imaging for various conditions such as lymphoma and neuroendocrine tumors by labeling tracers like Prostate Specific Membrane Antigen (PSMA) and DOTA-TOC. However, compared to Fluorine-18 (18F) used in conventional nuclear medicine imaging, 68Ga has lower spatial resolution and relatively higher Signal to Background Ratio (SBR). Therefore, this study aimed to investigate the optimized parameters and reconstruction methods for PET/CT imaging using the 68Ga radiotracer through model-based image evaluation. Materials and Methods: Based on clinical images of 68Ga-PSMA PET/CT, a NEMA/IEC 2008 PET phantom model was prepared with a Hot vs Background (H/B) ratio of 10:1. Images were acquired for 9 minutes in list mode using DMIDR (GE, Milwaukee WI, USA). Subsequently, reconstructions were performed for 1 to 8 minutes using OS-EM (Ordered Subset Expectation Maximization) + TOF (Time of Flight) + Sharp IR (VPFX-S), and BSREM (Block Sequential Regularized Expectation Maximization) + TOF + Sharp IR (QCFX-S-400), followed by comparative evaluation. Based on the previous experimental results, images were reconstructed for BSREM + TOF + Sharp IR / 2 minutes (QCFX-S-2min) with varying β-strength values from 100 to 700. The image quality was evaluated using AMIDE (freeware, Ver.1.0.1) and Advanced Workstation (GE, USA). Results: Images reconstructed with QCFX-S-400 showed relatively higher values for SNR (Signal to Noise Ratio), CNR (Contrast to Noise Ratio), count, RC (Recovery Coefficient), and SUV (Standardized Uptake Value) compared to VPFX-S. SNR, CNR, and SUV exhibited the highest values at 2 minutes/bed acquisition time. RC showed the highest values for a 10 mm sphere at 2 minutes/bed acquisition time. For small spheres of 10 mm and 13 mm, an inverse relationship between β-strength increase and count was observed. SNR and CNR peaked at β-strength 400 and then decreased, while SUV and RC exhibited a normal distribution based on sphere size for β-strength values of 400 and above. Conclusion: Based on the experiments, PET/CT imaging using the 68Ga radiotracer yielded the most favorable quantitative and qualitative results with a 2 minutes/bed acquisition time and BSREM reconstruction, particularly when applying β-strength 400. The application of BSREM can enhance accurate quantification and image quality in 68Ga PET/CT imaging, and an optimization process tailored to each institution's imaging objectives appears necessary.

A Study on Shape Optimum Design for Stability of Elastic Structures (탄성 구조물의 안정성을 고려한 형상최적설계)

  • Yang, Wook-Jin;Choi, Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.75-82
    • /
    • 2007
  • This paper addresses a method for shape optimization of a continuous elastic body considering stability, i.e., buckling behavior. The sensitivity formula for critical load is analytically derived and expressed in terms of shape variation, based on the continuum formulation of the stability problem. Unlike the conventional finite difference method (FDM), this method is efficient in that only a couple of analyses are required regardless of the number of design parameters. Commercial software such as ANSYS can be employed since the method requires only the result of the analysis in computation of the sensitivity. Though the buckling problem is more efficiently solved by structural elements such as a beam and shell, elastic solids have been chosen for the buckling analysis because solid elements can generally be used for any kind of structure whether it is thick or thin. Sensitivity is then computed by using the mathematical package MATLAB with the initial stress and buckling analysis of ANSYS. Several problems we chosen in order to illustrate the efficiency of the presented method. They are applied to the shape optimization problems to minimize weight under allowed critical loads and to maximize critical loads under same volume.

Optimization of Electro-UV-Ultrasonic Complex Process for E. coli Disinfection using Box-Behnken Experiment (Box-Behnken법을 이용한 E. coli 소독에서 전기-UV-초음파 복합 공정의 최적화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.3
    • /
    • pp.149-156
    • /
    • 2011
  • This experimental design and response surface methodology (RSM) have been applied to the investigation of the electro-UV-ultrasonic complex process for the disinfection of E. coli in the water. The disinfection reactions of electro-UV-ultrasonic process were mathematically described as a function of parameters power of electrolysis ($X_1$), UV ($X_2$), and ultrasonic process ($X_3$) being modeled by use of the Box-Behnken technique, which was used for fitting 2nd order response surface model. The application of RSM yielded the following regression equation, which is empirical relationship between the residual E. coli number (Ln CFU) in water and test variables in coded unit: residual E. coli number (Ln CFU) = 23.69 - 3.75 Electrolysis - 0.67 UV - 0.26 Ultrasonic - 0.16 Electrolysis UV + 0.05 Electrolysis Ultrasonic + 0.27 $Electrolysis^2$ + 0.14 $UV^2$ - 0.01 $Ultrasonic^2$). The model predictions agreed well with the experimentally observed result ($R^2$ = 0.983). Graphical 2D contour and 3D response surface plots were used to locate the optimum range. The estimated ridge of maximum response and optimal conditions for residual E. coli number (Ln CFU) using 'numerical optimization' of Design-Expert software were 1.47 Ln CFU/L and 6.94 W of electrolysis, 6.72 W of UV and 14.23 W of ultrasonic process. This study clearly showed that response surface methodology was one of the suitable methods to optimize the operating conditions and minimize the residual E. coli number of the complex disinfection.

An efficient approach for model updating of a large-scale cable-stayed bridge using ambient vibration measurements combined with a hybrid metaheuristic search algorithm

  • Hoa, Tran N.;Khatir, S.;De Roeck, G.;Long, Nguyen N.;Thanh, Bui T.;Wahab, M. Abdel
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.487-499
    • /
    • 2020
  • This paper proposes a novel approach to model updating for a large-scale cable-stayed bridge based on ambient vibration tests coupled with a hybrid metaheuristic search algorithm. Vibration measurements are carried out under excitation sources of passing vehicles and wind. Based on the measured structural dynamic characteristics, a finite element (FE) model is updated. For long-span bridges, ambient vibration test (AVT) is the most effective vibration testing technique because ambient excitation is freely available, whereas a forced vibration test (FVT) requires considerable efforts to install actuators such as shakers to produce measurable responses. Particle swarm optimization (PSO) is a famous metaheuristic algorithm applied successfully in numerous fields over the last decades. However, PSO has big drawbacks that may decrease its efficiency in tackling the optimization problems. A possible drawback of PSO is premature convergence leading to low convergence level, particularly in complicated multi-peak search issues. On the other hand, PSO not only depends crucially on the quality of initial populations, but also it is impossible to improve the quality of new generations. If the positions of initial particles are far from the global best, it may be difficult to seek the best solution. To overcome the drawbacks of PSO, we propose a hybrid algorithm combining GA with an improved PSO (HGAIPSO). Two striking characteristics of HGAIPSO are briefly described as follows: (1) because of possessing crossover and mutation operators, GA is applied to generate the initial elite populations and (2) those populations are then employed to seek the best solution based on the global search capacity of IPSO that can tackle the problem of premature convergence of PSO. The results show that HGAIPSO not only identifies uncertain parameters of the considered bridge accurately, but also outperforms than PSO, improved PSO (IPSO), and a combination of GA and PSO (HGAPSO) in terms of convergence level and accuracy.

Optimization of orthodontic microimplant thread design (교정용 마이크로 임플란트의 나사산 디자인 최적화)

  • Kim, Kwang-Duk;Yu, Won-Jae;Park, Hyo-Sang;Kyung, Hee-Moon;Kwon, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.41 no.1
    • /
    • pp.25-35
    • /
    • 2011
  • Objective: The purpose of this study was to optimize the thread pattern of orthodontic microimplants. Methods: In search of an optimal thread for orthodontic microimplants, an objective function stability quotient (SQ) was built and solved which will help increase the stability and torsional strength of microimplants while reducing the bone damage during insertion. Selecting the AbsoAnchor SH1312-7 microimplant (Dentos Inc., Daegu, Korea) as a control, and using the thread height (h) and pitch (p) as design parameters, new thread designs with optimal combination of hand p combination were developed. Design soundness of the new threads were examined through insertion strain analyses using 3D finite element simulation, torque test, and clinical test. Results: Solving the function SQ, four new models with optimized thread designs were developed (h200p6, h225p7, h250p8, and h275p8). Finite element analysis has shown that these new designs may cause less bone damage during insertion. The torsional strength of two models h200p6 and h225p7 were significantly higher than the control. On the other hand, clinical test of models h200p6 and h250p8 had similar success rates when compared to the control. Conclusion: Overall, the new thread designs exhibited better performance than the control which indicated that the optimization methodology may be a useful tool when designing orthodontic microimplant threads.

Optimization Design in Time Domain on Impulse GPIR System (임펄스 GPIR시스템의 시간영역 최적화 설계)

  • Kim, Kwan-Ho;Park, Young-Jin;Yoon, Young-Joong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.3
    • /
    • pp.32-39
    • /
    • 2009
  • In this paper, system optimization design technique of an impulse ground penetrating image radar (GPIR) in time domain is proposed to improve depth resolution of the system. For the purpose, time domain analysis method of key components such as impulse generator and UWB antenna is explained and by simulation, parameters of each component are determined. In particular, by standardizing the impulse signal, spectrum efficiency of a radiated impulse signal is improved and a U-shaped planar dipole antenna for a UWB antenna is developed. By equipping a parabolic metal reflector with the proposed antenna, external noise is prevented and the ability of radiating an input impulse into ground is improved. In addition, to remove ringing effect of the propose antenna which causes serious degradation of the system performance, resistors are loaded at the edge of the antenna and then Tx and Rx UWB antennas are optimized by simulation in time domain. For images of targets buried under the ground migration technique is applied and influence of tough ground surface on distortion of received impulse signals is reduced using technique of noise and signal distortion reduction in time domain and its time resolution is enhanced. To verify the design optimization procedure, a prototype of an GPIR and an artificial test field are made. Measurement results show that the resolution of the system designed is as good as that of a theoretical model.

Application of Response Surface Methodology in Medium Optimization to Improve Lactic Acid Production by Lactobacillus paracasei SRCM201474 (반응표면분석법을 이용한 Lactobacillus paracasei SRCM201474의 생산배지 최적화)

  • Ha, Gwangsu;Kim, JinWon;Im, Sua;Shin, Su-Jin;Yang, Hee-Jong;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.522-531
    • /
    • 2020
  • The aim of this study was to establish the optimal medium composition for enhancing L(+)-lactic acid (LLA) production using response surface methodology (RSM). Lactobacillus paracasei SRCM201474 was selected as the LLA producer by productivity analysis from nine candidates isolated from kimchi and identified by 16S rRNA gene sequencing. Plackett-Burman design was used to assess the effect of eleven media components on LLA production, including carbon (glucose, sucrose, molasses), nitrogen (yeast extract, peptone, tryptone, beef extract), and mineral (NaCl, K2HPO4, MgSO4, MnSO4) materials. Glucose, sucrose, molasses, and peptone were subsequently chosen as promising media for further optimization studies, and a hybrid design experiment was used to establish their optimal concentrations as glucose 15.48 g/l, sucrose 16.73 g/l, molasses 39.09 g/l, and peptone 34.91 g/l. The coefficient of determination of the equation derived from RSM regression for LLA production was mathematically reliable at 0.9969. At optimum parameters, 33.38 g/l of maximum LLA increased by 193% when compared with MRS broth as unoptimized medium (17.66 g/l). Our statistical model was confirmed by subsequent validation experiments. Increasing the performance of LLA-producing microorganisms and establishing an effective LLA fermentation process can be of particular benefit for bioplastic technologies and industrial applications.