Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.6.522

Application of Response Surface Methodology in Medium Optimization to Improve Lactic Acid Production by Lactobacillus paracasei SRCM201474  

Ha, Gwangsu (Microbial Institute for Fermentation Industry (MIFI))
Kim, JinWon (Microbial Institute for Fermentation Industry (MIFI))
Im, Sua (Microbial Institute for Fermentation Industry (MIFI))
Shin, Su-Jin (Microbial Institute for Fermentation Industry (MIFI))
Yang, Hee-Jong (Microbial Institute for Fermentation Industry (MIFI))
Jeong, Do-Youn (Microbial Institute for Fermentation Industry (MIFI))
Publication Information
Journal of Life Science / v.30, no.6, 2020 , pp. 522-531 More about this Journal
Abstract
The aim of this study was to establish the optimal medium composition for enhancing L(+)-lactic acid (LLA) production using response surface methodology (RSM). Lactobacillus paracasei SRCM201474 was selected as the LLA producer by productivity analysis from nine candidates isolated from kimchi and identified by 16S rRNA gene sequencing. Plackett-Burman design was used to assess the effect of eleven media components on LLA production, including carbon (glucose, sucrose, molasses), nitrogen (yeast extract, peptone, tryptone, beef extract), and mineral (NaCl, K2HPO4, MgSO4, MnSO4) materials. Glucose, sucrose, molasses, and peptone were subsequently chosen as promising media for further optimization studies, and a hybrid design experiment was used to establish their optimal concentrations as glucose 15.48 g/l, sucrose 16.73 g/l, molasses 39.09 g/l, and peptone 34.91 g/l. The coefficient of determination of the equation derived from RSM regression for LLA production was mathematically reliable at 0.9969. At optimum parameters, 33.38 g/l of maximum LLA increased by 193% when compared with MRS broth as unoptimized medium (17.66 g/l). Our statistical model was confirmed by subsequent validation experiments. Increasing the performance of LLA-producing microorganisms and establishing an effective LLA fermentation process can be of particular benefit for bioplastic technologies and industrial applications.
Keywords
Lactic acid; Lactobacillus paracasei; optimization; polylactic acid; response surface methodology;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Ahn, S. J., Cayetano, R. D., Kim, T. H. and Kim, J. S. 2015. Lactic acid production from hydrolysate of pretreated cellulosic biomass by Lactobacillus rhamnosus. Kor. Chem. Eng. Res. 53, 1-5.   DOI
2 Bang, J. H., Shin, H. J., Choi, H. J., Kim, D. W., Ahn, C. S., Jeong, Y. K. and Joo, W. H. 2012. Probiotic potential Lactobacillus isolates. J. Life Sci. 22, 251-258.   DOI
3 Chauhan, K. T. and Patel, K. C. 2006. Application of response surface methodology for optimization of lactic acid production using date juice. J. Microbiol. Biotechnol. 16, 1410-1415.
4 Choi, J. I., Lee, H. S., Choi, S. K., Kim, J. H., Kim, J. K., Misawa, N., Byun, M. W. and Lee, J. W. 2009. Optimization of medium for axtaxanthin production by Paracoccus sp. using response surface methodology. KSBB J. 24, 321-326.
5 Dumbrepatil, A., Adsul, M., Chaudhari, S., Khire, J. and Gokhale, D. 2008. Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbreuckii mutant Uc-3 in batch fermentation. Appl. Environ. Microbiol. 74, 333-335.   DOI
6 Ewaschuk, J. B., Naylor, J. M. and Zello, G. A. 2005. D-lactate in human and ruminant metabolism. J. Nutr. 135, 1619-1625.   DOI
7 Ha, G. S., Shin, S. J., Jeong, S. Y., Yang, H. Y., Im, S. A., Heo, J. H., Yang, H. J. and Jeong, D. Y. 2019. Optimization of medium components using response surface methodology for cost-effective mannitol production by Leuconostoc mesenteroides SRCM201425. J. Life Sci. 29, 861-870.
8 Kim, D. S. and Park, Y. S. 2014. Optimization of gas mixing- circulation plasma process using design of experiments. J. Environ. Sci. Int. 23, 359-368.   DOI
9 Ha, G. S., Yang, H. J., Jeong, S. J., Ryu, M. S., Kim, J. W., Yang, H. Y., Shin, S. J., Im, S. A., Seo, J. W., Jeong, S. Y. and Jeong, D. Y. 2018. Medium optimization for enhanced growth of Bacillus subtilis SRCM102046 possessing antibacterial activity using response-surface methodology. Kor. J. Food Preserv. 25, 613-624.   DOI
10 Jeong, S. J., Yang, H. J., Ryu, M. S., Seo, J. W., Jeong, S. Y. and Jeong, D. Y. 2018. Statistical optimization of culture conditions of probiotic Lactobacillus brevis SBB07 for enhanced cell growth. J. Life Sci. 28, 577-586.   DOI
11 Moon, S. K., Wee, Y. J. and Choi, G. W. 2012. A novel lactic acid bacterium for the production of high purity L-lactic acid, Lactobacillus paracasei subsp. paracasei CHB2121. J. Biosci. Bioeng. 114, 155-159.   DOI
12 Kim, K. A., Kim, M. G., Jang, K. L. and Jun, H. K. 2003. Production of L-lactic acid from soluble starch by Enterococcus sp. JA-27. J. Microbiol. Biotechnol. 31, 250-256.
13 Lee, K. W., Park, H. S. and Kim, Y. H. 2010. Crystalization behavior and thermal property of poly(D-lactic acid-b-L-lactic acid). Text. Sci. Eng. 47, 406-413.
14 Mirdamadi, S., Sadeghi, H., Sharafi, N., Fallahpour, M., Mohseni, F. A. and Bakhtiari, M. R. 2002. Comparison of lactic acid isomers produced by fungal and bacterial strains. Iran. Biomed. J. 6, 69-75.
15 Oh, E. J., Yang, J. A., Yang, S. Y., Kim, J. K. and Han, S. K. 2007. Drug delivery system for protein drugs. Polym. Korea 18, 444-449.
16 Papagianni, M. 2012. Metabolic engineering of lactic acid bacteria for the production of industrially important compounds. Comput. Struct. Biotechnol. J. 3, e201210003.   DOI
17 Srivastava, A. K., Tripathi, A. D., Jha, A., Poonia, A. and Sharma, N. 2015. Production, optimization and characterization of lactic acid by Lactobacillus delbrueckii NCIM 2025 from utilizing agro-industrial byproduct (cane molasses). J. Food Sci. Technol. 52, 3571-3578.   DOI
18 Roquemore, K. G. 1976. Hybrid designs for quadratic response surfaces. Technometrics 18, 419-423.   DOI
19 Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
20 Sim, H. S. and Kim, M. D. 2015. Characteristics of lactic acid production by Lactobacillus buchneri isolated from Kimchi. Microbiol. Biotechnol. Lett. 43, 286-290.   DOI
21 Stefanovic, E. and McAuliffe, O. 2018. Comparative genomic and metabolic analysis of three Lactobacillus paracasei cheese isolates reveals considerable genomic differences in strains from the same niche. BMC Genomics 19, 205.   DOI
22 Vijayakumar, J., Aravindan, R. and Viruthagiri, T. 2008. Recent trends in the production, purification and application of lactic acid. Chem. Biochem. Eng. Q. 22, 245-264.
23 Vodnar, D. C., Venus, J., Schnelder, R. and Socaclu, C. 2010. Lactic acid production by Lactobacillus paracasei 168 in discontinuous fermentation using lucerne green juice as nutrient substitute. Chem. Eng. Technol. 33, 468-474.   DOI
24 Wee, Y. J., Kim, J. N., Yun, J. S., Park, D. H., Kim, D. M. and Ryu, H. W. 2004. Fed-batch culture of Enterococcus faecalis RKY1 for L(+)-lactic acid production. Kor. J. Biotechnol. Bioeng. 19, 410-414.
25 Yun, J. S., Moon, S. K., Wee, Y. J. and Ryu, H. W. 2003. Biotechnological production and industrial applications of lactic acid. KSBB J. 4, 64-68.