• 제목/요약/키워드: Parameter robustness

검색결과 533건 처리시간 0.034초

Robust Nonlinear H$\infty$ FIR Filtering for Time-Varying Systems

  • Ryu, Hee-Seob;Son, Won-Kee;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권3호
    • /
    • pp.175-181
    • /
    • 2000
  • This paper investigates the robust nonlinear H$_{\infty}$ filter with FIR(Finite Impulse Response) structure for nonlinear discrete time-varying uncertain systems represented by the state-space model having parameter uncertainty. Firstly, when there is no parameter uncertainty in the system, the discrete-time nominal nonlinear H$_{\infty}$ FIR filter is derived by using the equivalence relationship between the FIR filter and the recursive filter, which corresponds to the standard nonlinear H$_{\infty}$ filter. Secondly, when the system has the parameter uncertainty, the robust nonlinear H$_{\infty}$ FIR filter is proposed for the discrete-time nonlinear uncertain systems.

  • PDF

영구자석 동기전동기의 강인한 센서리스 속도제어 (Robust Speed Control of Sensorless PMSM)

  • 이동희;손문경;권영안
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 A
    • /
    • pp.112-114
    • /
    • 1997
  • Recently sensorless PMSM is much studied for the industrial applications and home appliances. Most of sensorless algorithm are based on the motor equations of which coefficients are motor parameters. However, uncertainty of motor parameter effects the accuracy of speed estimation of PMSM. This paper investigates the robust speed control of sensorless PMSM which has robustness to parameter uncertainty or variation. The parameter compensation is performed through PI control of the speed error between the estimated speed and the real speed obtained from the measured current. The proposed algorithm is verified through the experiment.

  • PDF

독립된 모달공간에서 양 위치피드백 제어기법의 강인성 (Robustness of Positive Position Feedback Control in the Independent Modal Space)

  • 황재혁;백승호
    • 소음진동
    • /
    • 제4권2호
    • /
    • pp.177-185
    • /
    • 1994
  • In this study, the effect of parameter errors on the closed-loop behavior of flexible structure is analyzed for IMSC(Independent Modal Space Control) with PPF(Positive Position Feedback). If the control force designed on the basis of structure model with the parameter errors is applied to control the actual system, the closed-loop performance of the actural system will be degraded depending on the degree of the errors. An asymptotic stability condition has been derived, using Lyapunov approach, which is independent of the dynamic characteristics of the structure being controlled. The extent of deviation of the closed-loop performance from the designed one is also derived and evaluated using operator techniques. It has been found that the extent of the deviation is proportational to the magnitude of the parameter errors, and that the proportional coefficient depends on the control algorithm.

  • PDF

A Robust Adaptive Control for Permanent Magnet Synchronous Motor Subject to Parameter Uncertainties and Input Saturations

  • Wu, Shaofang;Zhang, Jianwu
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.2125-2133
    • /
    • 2018
  • To achieve high performance speed regulation, a robust adaptive speed controller is proposed for the permanent magnet synchronous motor (PMSM) subject to parameter uncertainties and input saturations in this paper. A nonlinear adaptive control is introduced to compensate the PMSM speed tracking errors due to uncertainties, disturbances and control input saturation constraints. By combining the adaptive control and the nonlinear robust control based on the interconnection and damping assignment (IDA) strategy, a new robust adaptive control is designed for speed regulation of PMSM. Stability and robustness of the closed-loop control system involved with the constrained control inputs rather than unconstrained control inputs are validated. Simulations for PMSM control in the presence of uncertainties and saturations nonlinearities show that the proposed approach is effective to regulate speed, and the average tracking error using the proposed approach is at least 32% smaller than the compared methods.

매개변수 추정 방법 개선에 의한 적응 제어 시스템의 견실성 향상 (A robustness enhancement of adaptive control system by improvement of parameter estimation method.)

  • 최종호;이하정
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 전기.전자공학 학술대회 논문집(I)
    • /
    • pp.144-147
    • /
    • 1987
  • An adaptive control algorithm for a plant with unmodelled dynamics is proposed. The upper bounds of the output due to the unmodelled dynamics and measurement noise is assumed to be known. Linear programming is used in estimating the bounds of plant parameters. Projection type algorithm is used in estimating the plant parameter with these bounds. This algorithm is nearly the same as those proposed by Kreisselmeier or Middleton except that the bounds are computed by linear programming. The stability of the proposed algorithm Can be proved in nearly the same way as that of Middleton. Simulation results show that the proposed algorithm gives better parameter convergence and smaller overshoot in the plant output than the algorithm without computing the bounds of plant parameters by linear programming.

  • PDF

미지의 파라메터를 가진 비선형 시스템의 궤환 선형화 제어기개발. (Design of the Feedback linearizing Nonlinear Control with Uncertain Parameter.)

  • 주성준;서진헌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1134-1136
    • /
    • 1996
  • A necessary and suficient conditions is proposed for feedback linearizable SISO systems with unknown constant parameters. It is shown that the systems which satisfy the proposed conditions can be transformed into a controllable linear system with unknown parameter and it can be stabilized using the nonlinear feedback linearizing controller. We also present the analysis and implementation of a nonlinear feedback linearizing control for an Electro-Magnetic Suspension (EMS) system. We show that an EMS system is nonlinear feedback linearizable and satisfies the proposed conditions, and hence that the proposed nonlinear feedback controller for an EMS system is robust against mass parameter perturbation and force disturbance.

  • PDF

내부 모델 기반 외란 관측기를 이용한 수직 1축 머니퓰레이터의 속도 제어기 설계 (Design of a Speed Controller for Vertical One-Link Manipulator Using Internal Model-based Disturbance Observer)

  • 이초원;김인혁;손영익
    • 전기학회논문지
    • /
    • 제64권5호
    • /
    • pp.751-754
    • /
    • 2015
  • This paper deals with a robust speed control problem of a vertical one-link manipulator in the presence of parameter uncertainties and unknown input disturbance. Uncertain load weight causes an additional sinusoidal disturbance in the rotation of the link. In order to improve the robustness against parameter uncertainties and external input disturbances, this paper employs an internal model-based disturbance observer approach. Comparative computer simulations are performed to test the performance of the proposed controller. The simulation results show the enhanced performance of the proposed method.

Hybrid F-NFC에 의한 저속 디젤 기관의 속도 제어 (Speed Control for Low Speed Diesel Engine by Hybrid F-NFC)

  • 최교호;양주호
    • 동력기계공학회지
    • /
    • 제10권4호
    • /
    • pp.159-164
    • /
    • 2006
  • In recent, the marine engine of a large size is being realized a lower speed, longer stroke and a small number of cylinders for the energy saving. Consequently the variation of rotational torque became larger than former days because of the longer delay-time in fuel oil injection process and an increased output per cylinder. It was necessary that algorithms have enough robustness to suppress the variation of the delay-time and the parameter perturbation. This paper shows the structure of hybrid F-NFC against the delay-time and the perturbation of engine parameter as modeling uncertainties, and the design of the robust speed controller by hybrid F-NFC for the engine. And, The Parameter values of linear equation are determined by RC-GA for F-NFS. The hybrid F-NFC is combined the F-NFC and PID controller for filling up each.

  • PDF

Robust Predictive Speed Control for SPMSM Drives Based on Extended State Observers

  • Xu, Yanping;Hou, Yongle;Li, Zehui
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.497-508
    • /
    • 2019
  • The predictive speed control (PSC) strategy can realize the simultaneous control of speed and current by using one cost function. As a model-based control method, the performance of the PSC is vulnerable to model mismatches such as load torque disturbances and parameter uncertainties. To solve this problem, this paper presents a robust predictive speed control (RPSC) strategy for surface-mounted permanent magnet synchronous motor (SPMSM) drives. The proposed RPSC uses extended state observers (ESOs) to estimate the lumped disturbances caused by load torque changes and parameter mismatches. The observer-based prediction model is then compensated by using the estimated disturbances. The introduction of ESOs can achieve robustness against predictive model uncertainties. In addition, a modified cost function is designed to further suppress load torque disturbances. The performance of the proposed RPSC scheme has been corroborated by experimental results under the condition of load torque changes and parameter mismatches.

PARAMETER DEPENDENCE OF SMOOTH STABLE MANIFOLDS

  • Barreira, Luis;Valls, Claudia
    • 대한수학회지
    • /
    • 제56권3호
    • /
    • pp.825-855
    • /
    • 2019
  • We establish the existence of $C^1$ stable invariant manifolds for differential equations $u^{\prime}=A(t)u+f(t,u,{\lambda})$ obtained from sufficiently small $C^1$ perturbations of a nonuniform exponential dichotomy. Since any linear equation with nonzero Lyapunov exponents has a nonuniform exponential dichotomy, this is a very general assumption. We also establish the $C^1$ dependence of the stable manifolds on the parameter ${\lambda}$. We emphasize that our results are optimal, in the sense that the invariant manifolds are as regular as the vector field. We use the fiber contraction principle to establish the smoothness of the invariant manifolds. In addition, we can also consider linear perturbations, and thus our results can be readily applied to the robustness problem of nonuniform exponential dichotomies.