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PARAMETER DEPENDENCE OF

SMOOTH STABLE MANIFOLDS

Luis Barreira and Claudia Valls

Abstract. We establish the existence of C1 stable invariant manifolds

for differential equations u′ = A(t)u+f(t, u, λ) obtained from sufficiently
small C1 perturbations of a nonuniform exponential dichotomy. Since

any linear equation with nonzero Lyapunov exponents has a nonuniform

exponential dichotomy, this is a very general assumption. We also estab-
lish the C1 dependence of the stable manifolds on the parameter λ. We

emphasize that our results are optimal, in the sense that the invariant

manifolds are as regular as the vector field. We use the fiber contraction
principle to establish the smoothness of the invariant manifolds. In addi-

tion, we can also consider linear perturbations, and thus our results can

be readily applied to the robustness problem of nonuniform exponential
dichotomies.

1. Introduction

The existence of an exponential dichotomy for a linear equation

(1) u′ = A(t)u

ensures the existence of stable and unstable invariant manifolds under suf-
ficiently small perturbations. More generally, we can consider nonuniform
exponential dichotomies. It turns out that the classical notion of (uniform)
exponential dichotomy is very stringent for the dynamics and it is of interest
to look for more general types of hyperbolic behavior. These generalizations
can be much more typical. For example, almost all linear variational equa-
tions with nonzero Lyapunov exponents obtained from a measure-preserving
flow have a nonuniform exponential dichotomy. We refer to [1] for a related
discussion. Moreover, it is easy to show that if an autonomous linear equation
has a nonuniform exponential dichotomy, then in fact the dichotomy must be
uniform. This is why in the study of nonuniform exponential behavior we are
only interested in perturbations of nonautonomous linear differential equations.
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Our main objective is to show that the stable invariant manifolds for per-
turbations of equation (1) are of class C1 provided that the vector field is of
class C1, thus establishing their optimal regularity in the nonuniform setting.
More precisely, we consider the perturbed equation

(2) u′ = A(t)u+ f(t, u, λ),

where A and f are C1 functions. We assume that f(t, 0, λ) = f(t, u, λ) = 0 for
every t ≥ 0, u ∈ X = Rp with ‖u‖ ≥ c, and λ in an open ball Y ⊂ Rq for some
constant c > 0.

The following is a consequence of our stable manifold theorem.

Theorem 1. If equation (1) has a nonuniform exponential dichotomy, and∥∥∥∥∂f∂u (t, u, λ)

∥∥∥∥ ≤ κe−t/κ and

∥∥∥∥∂f∂λ (t, u, λ)

∥∥∥∥ ≤ κe−t/κ‖u‖
for every t ≥ 0, u ∈ X, and λ ∈ Y , for some sufficiently small κ > 0, then for
each λ ∈ Y the zero solution of equation (2) has a C1 stable invariant manifold
Vλ. In addition, the map λ 7→ Vλ is of class C1.

Reversing time we can also obtain invariant unstable manifolds with optimal
regularity. The invariance of the stable manifolds means that for each λ ∈ Y
the set Vλ is invariant under the flow defined by the autonomous equation

t′ = 1, u′ = A(t)u+ f(t, u, λ).

More generally, we also consider linear equations (1) that may exhibit stable
and unstable behavior with respect to arbitrary growth rates ecρ(t) determined
by a function ρ(t). We note that the usual exponential behavior with ρ(t) = t
is included as a very special case. These arbitrary growth rates include for
example situations in which all Lyapunov exponents of equation (1) are infinite
(either +∞ or −∞).

Our results are also a contribution to the theory of nonuniform hyperbolicity.
We refer to [1] for a detailed exposition of the theory, which goes back to the
landmark works of Oseledets [6] and particularly Pesin [7,8]. Among the most
important properties due to nonuniform hyperbolicity is precisely the existence
of stable and unstable invariant manifolds, established by Pesin in [7]. In [10]
Ruelle obtained a proof of the stable manifold theorem based on the study
of perturbations of products of matrices in Oseledets’ multiplicative ergodic
theorem [6]. Another proof was given by Pugh and Shub in [9] using graph
transform techniques. In [4] Fathi, Herman and Yoccoz provided a detailed ex-
position of the stable manifold theorem essentially following the approaches of
Pesin and Ruelle. In [11] Ruelle established a version of the theorem in Hilbert
spaces, following his approach in [10]. In [5] Mañé considered transformations
in Banach spaces under certain compactness and invertibility assumptions. We
note that in all these works the dynamics is assumed to be of class C1+ε for
some ε > 0. Pugh and Shub first obtained in [9] an optimal regularity of the
stable manifolds for diffeomorphisms on finite-dimensional manifolds. Namely,



PARAMETER DEPENDENCE OF SMOOTH STABLE MANIFOLDS 827

they showed that the stable manifolds are of class C1+ε if the dynamics is of
class C1+ε. More recently, we showed in [2] that the stable manifolds are of
class C1 with Lipschitz derivative if the dynamics has this same regularity,
which provides another optimal result.

In strong contrast, here we only assume that the dynamics is of class C1

and we show that there exist stable manifolds with the optimal C1 regularity.
Moreover, we establish the C1 dependence of the stable manifolds on a param-
eter assuming that the dynamics is C1 on this parameter (see Theorem 1). The
proof is based on earlier work of ours in [3] where we obtained stable manifolds
with the optimal C1 regularity, but without considering a dependence on a
parameter. We emphasize that although the present approach follows analo-
gous steps, the required changes to consider a dependence on a parameter are
nontrivial in particular since it is impossible to know a priori whether there
are appropriate estimates for some new associated operators. Incidentally, it
should be noted that although all works [2, 3, 9] establish the optimal regular-
ity of the stable manifolds under corresponding assumptions for the dynamics
(assumed to be, respectively, C1 with Lipschitz derivative, C1 and C1+ε), the
three methods of proof are quite different and each of them seems to be of no
use in the other two deellopments.

More precisely, the proof of the C1 regularity of the stable manifolds uses
what is usually called the fiber contraction principle (unlike, besides [3], all the
works mentioned above). Given metric spaces X = (X, dX) and Y = (Y, dY ),
we define a distance in X × Y by

d((x, y), (x̄, ȳ)) = dX(x, x̄) + dY (y, ȳ).

We consider transformations S : X × Y → X × Y of the form

S(x, y) = (T (x), A(x, y))

for some functions T : X → X and A : X × Y → Y . We say that S is a fiber
contraction if there exists λ ∈ (0, 1) such that

dY (A(x, y), A(x, ȳ)) ≤ λdY (y, ȳ)

for every x ∈ X and y, ȳ ∈ Y . For each x ∈ X we define a transformation
Ax : Y → Y by Ax(y) = A(x, y). We also say that a fixed point x0 ∈ X of T is
attracting if Tn(x)→ x0 when n→∞, for every x ∈ X.

Proposition 1 (Fiber contraction principle). If S is a continuous fiber con-
traction, x0 ∈ X is an attracting fixed point of T , and y0 ∈ Y is a fixed point
of Ax0

, then (x0, y0) is an attracting fixed point of S.

A nontrivial consequence of Theorem 1 concerns the robustness problem of
nonuniform exponential dichotomies. Namely, consider the linear equation

(3) u′ = [A(t) +B(t, λ)]u

in X = Rp, where t 7→ A(t) and (t, λ) 7→ B(t, λ) are C1 functions. The ro-
bustness problem asks under what assumptions the exponential behavior of
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a nonuniform exponential dichotomy for equation (1) with a < 0 < b in (5)
persists under such a linear perturbation. The following is an immediate con-
sequence of Theorem 1.

Theorem 2. If equation (1) has a nonuniform exponential dichotomy with
a < 0 < b in (5), and

‖B(t, λ)‖ ≤ κe−t/κ and ‖(∂B/∂λ)(t, λ)‖ ≤ κe−t/κ

for every t ≥ 0, u ∈ X, and λ ∈ Y , for some sufficiently small κ > 0, then
equation (3) has stable and unstable invariant subspaces Esλ(t) and Euλ(t) for
each t ≥ 0 and λ ∈ Y . In addition, the functions λ 7→ Esλ(t) and λ 7→ Euλ(t)
are of class C1 for each t ≥ 0.

For each t, τ ≥ 0, the subspaces Esλ(t) and Euλ(t) satisfy X = Esλ(t)⊕Euλ(t),

Tλ(t, τ)Esλ(τ) = Esλ(t) and Tλ(t, τ)Euλ(τ) = Euλ(t),

where Tλ(t, τ) is the linear evolution operator associated to equation (3). More-
over, for each λ ∈ Y there exist constants a < 0 < b and ε,D > 0 such that

‖Tλ(t, τ)|Esλ(τ)‖ ≤ Dea(t−τ)+ετ , ‖Tλ(t, τ)|Euλ(τ)‖ ≤ De−b(t−τ)+εt

for each t ≥ τ ≥ 0.

2. Standing assumptions

The following are standing assumptions in the paper. Let X be a Banach
space, and let A : R+

0 → B(X) be a C1 function, where B(X) is the set of
bounded linear operators in X. We consider the initial value problem

(4) u′ = A(t)u, u(s) = us

for each s ≥ 0 and us ∈ X. Its unique solution is defined for every t > 0,
and we write it in the form u(t) = T (t, s)u(s), where T (t, s) is the associated
linear evolution operator. Given an increasing differentiable function ρ : R+

0 →
R+

0 with ρ(t) → +∞ when t → +∞, we say that equation (4) admits a ρ-
nonuniform exponential dichotomy if there exist constants

(5) a < 0 ≤ b, ε,D > 0,

and a continuous function P : R+
0 → B(X) such that P (t) is a projection for

t ≥ 0, and for each t ≥ s ≥ 0 we have

P (t)T (t, s) = T (t, s)P (s),

(6) ‖T (t, s)P (s)‖ ≤ Dea(ρ(t)−ρ(s))+ερ(s),

and

(7) ‖T (t, s)−1Q(t)‖ ≤ De−b(ρ(t)−ρ(s))+ερ(t),
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where Q(t) = Id−P (t) is the complementary projection of P (t). We then
define the stable and unstable subspaces at time s by

E(s) = P (s)X and F (s) = Q(s)X.

Now let Y be an open subset of a Banach space (the parameter space), and
let f : R+

0 ×X × Y → X be a C1 function with f(t, 0, λ) = 0 for every t ≥ 0
and λ ∈ Y . We assume that there is a constant δ > 0 such that

(8)
∥∥∥∂f
∂u

(t, u, λ)
∥∥∥ ≤ δmin{1, ρ′(t)}e−3ερ(t),

and

(9)
∥∥∥∂f
∂λ

(t, u, λ)
∥∥∥ ≤ δmin{1, ρ′(t)}e−3ερ(t)‖u‖

for every t ≥ 0, u ∈ X, and λ ∈ Y .
Given s ≥ 0 and us = (ξ, η) ∈ E(s)× F (s), let (x(t), y(t)) ∈ E(t)× F (t) be

the unique solution of the initial value problem

(10) u′ = A(t)u+ f(t, u, λ), u(s) = us,

or equivalently of the problem{
x(t) = T (t, s)ξ +

∫ t
s
P (t)T (t, s)f(τ, x(τ), y(τ), λ) dτ,

y(t) = T (t, s)η +
∫ t
s
Q(t)T (t, s)f(τ, x(τ), y(τ), λ) dτ.

By (8), each solution of this problem is defined for every t > 0. Indeed, it
follows from (10) that

u(t) = u(s) +

∫ t

s

A(τ)u(τ) dτ +

∫ t

s

f(τ, u(τ), λ) dτ

and thus, by (8),

‖u(t)‖ ≤ ‖u(s)‖+

∫ t

s

‖A(τ)‖ · ‖u(τ)‖ dτ + δ

∫ t

s

ρ′(τ)e−3ερ(τ)‖u(τ)‖ dτ.

It follows from Gronwall’s lemma that

‖u(t)‖ ≤ ‖u(s)‖ exp

∫ t

s

(
‖A(τ)‖+ δρ′(τ)e−3ερ(τ)

)
dτ

= ‖u(s)‖ exp

(∫ t

s

‖A(τ)‖ dτ − δ

3ε
e−3ε(ρ(t)−ρ(s))

)
,

and each solution is global. For each τ ≥ 0 we also write

Ψλ
τ (s, us) = (s+ τ, x(s+ τ), y(s+ τ)),

where (x(t), y(t)) is the solution of equation (10). We note that this is the
semiflow defined by the autonomous equation

t′ = 1, u′ = A(t)u+ f(t, u, λ)

for each given λ ∈ Y .



830 L. BARREIRA AND C. VALLS

3. Invariant stable manifolds

We establish in this section the existence of C1 stable manifolds for equation
(10) assuming that equation (4) has a nonuniform exponential dichotomy. We
also show that the stable manifolds are C1 in λ. We emphasize that since the
vector field is of class C1 both results are optimal.

Let X be the space of families φ = (φλ)λ∈Y of continuous functions

φλ :
{

(s, ξ) ∈ R+
0 ×X : ξ ∈ E(s)

}
→ X

such that for each s ≥ 0, ξ, ξ̄ ∈ E(s), and λ, µ ∈ Y :

1. φλ(s, 0) = 0 and φλ(s, E(s)) ⊂ F (s);
2.

(11) ‖φλ(s, ξ)− φλ(s, ξ̄)‖ ≤ ‖ξ − ξ̄‖,

and

(12) ‖φλ(s, ξ)− φµ(s, ξ)‖ ≤ ‖λ− µ‖ · ‖ξ‖.

Given φ ∈ X and λ ∈ Y we consider the graph

Vφ,λ =
{

(s, ξ, φλ(s, ξ)) : (s, ξ) ∈ R+
0 × E(s)

}
of φλ. The stable manifolds of equation (10) are obtained in this form.

The following is our stable manifold theorem.

Theorem 3. If the equation u′ = A(t)u admits a ρ-nonuniform exponential
dichotomy with

(13) a− b+ ε < 0,

f(t, 0, λ) = 0 for every t ≥ 0 and λ ∈ Y , and (8) and (9) hold with δ sufficiently
small, then there is a unique function φ ∈ X such that

(14) Ψλ
τ (Vφ,λ) = Vφ,λ for every τ ≥ 0, λ ∈ Y.

Moreover,
1. there exists D′ > 0 such that for every s ≥ 0, λ, µ ∈ Y , ξ, ξ̄ ∈ E(s), and

τ ≥ 0 we have

‖Ψλ
t−s(s, ξ, φλ(s, ξ))−Ψλ

t−s(s, ξ̄, φλ(s, ξ̄))‖

≤ D′e(a+2δD)(ρ(t)−ρ(s))+ερ(s)‖ξ − ξ̄‖,

and

‖Ψλ
t−s(s, ξ, φλ(s, ξ))−Ψµ

t−s(s, ξ, φµ(s, ξ))‖

≤ D′e(a+2δD)(ρ(t)−ρ(s))+ερ(s)‖ξ‖ · ‖λ− µ‖;

2. for X = Rp and Y ⊂ Rq an open ball, if f(t, u, λ) = 0 for every t ≥ 0,
u ∈ X with ‖u‖ ≥ c, and λ ∈ Y , for some constant c > 0, then:

(a) the function (ξ, λ) 7→ φλ(s, ξ) is of class C1 for each s ≥ 0;



PARAMETER DEPENDENCE OF SMOOTH STABLE MANIFOLDS 831

(b) if in addition (∂f/∂u)(t, 0, λ) = 0 for every t ≥ 0 and λ ∈ Y , then

(∂φλ/∂ξ)(s, 0) = 0 for every (s, λ) ∈ R+
0 × Y.

Proof. We separate the proof into several steps.

Step 1: Solution in the stable direction. Given s ≥ 0 we consider the space
B = Bs of continuous functions

x :
{

(t, ξ, λ) : t ≥ s, ξ ∈ E(s), and λ ∈ Y
}
→ X

such that:

1. for every t ≥ s, ξ ∈ E(s), and λ ∈ Y we have

x(s, ξ, λ) = ξ and x(t, ξ, λ) ∈ E(t);

2.

(15) α(x) := sup

{
‖x(t, ξ, λ)‖

‖ξ‖ea(ρ(t)−ρ(s))+ερ(s)

}
≤ 2D,

with the supremum taken over t ≥ s, ξ ∈ E(s) \ {0}, and λ ∈ Y .

By (15) and the continuity of x we have

(16) x(t, 0, λ) = 0 for every t ≥ s.

We can easily verify that B is a complete metric space with the distance induced
by the norm α in (15).

So that (14) holds we must have y(t) = φ(t, x(t)) for every t ≥ s, that is,

(17) x(t) = T (t, s)ξ +

∫ t

s

P (t)T (t, s)f(τ, x(τ), φλ(τ, x(τ)), λ) dτ,

and

(18) φλ(t, x(t)) = T (t, s)φλ(s, ξ) +

∫ t

s

Q(t)T (t, s)f(τ, x(τ), φλ(τ, x(τ)), λ) dτ.

Lemma 1. For every δ > 0 sufficiently small, given φ ∈ X and s ≥ 0 there is
a unique function x = xφ ∈ B satisfying (17) for every t ≥ s, ξ ∈ E(s), and
λ ∈ Y . Furthermore,

(19) ‖xφ(t, ξ, λ)− xφ(t, ξ, µ)‖ ≤ 3D2δ

ε
e(a+2δD)(ρ(t)−ρ(s))‖ξ‖ · ‖λ− µ‖

for every φ ∈ X, t ≥ s, ξ ∈ E(s), and λ, µ ∈ Y .

Proof. Given φ ∈ X, we define an operator J on B by

(Jx)(t, ξ, λ) = T (t, s)ξ +

∫ t

s

P (t)T (t, τ)f(τ, x(τ, ξ, λ), φλ(τ, x(τ, ξ, λ)), λ) dτ

for each t ≥ s, ξ ∈ E(s), and λ ∈ Y . Clearly, Jx is a continuous function, and
(Jx)(s, ξ, λ) = ξ.
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By (8), (11), and (15), for each τ ≥ s, we have

K(τ) := ‖f(τ, x(τ, ξ, λ), φλ(τ, x(τ, ξ, λ)), λ)

− f(τ, y(τ, ξ, λ), φλ(τ, y(τ, ξ, λ)), λ)‖

≤ δρ′(τ)e−3ερ(τ)‖(x(τ, ξ, λ), φλ(τ, x(τ, ξ, λ)))

− (y(τ, ξ, λ), φλ(τ, y(τ, ξ, λ)))‖

≤ 2δρ′(τ)e−3ερ(τ)‖x(τ, ξ, λ)− y(τ, ξ, λ)‖

≤ 2δρ′(τ)ea(ρ(τ)−ρ(s))+ερ(s)e−3ερ(τ)‖ξ‖α(x− y).(20)

By (6) we obtain

‖(Jx)(t, ξ, λ)− (Jy)(t, ξ, λ)‖

≤
∫ t

s

‖P (t)T (t, τ)‖K(τ) dτ

≤ 2δD‖ξ‖α(x− y)

∫ t

s

ea(ρ(t)−ρ(τ))+ερ(τ)ea(ρ(τ)−ρ(s))+ερ(s)e−3ερ(τ)ρ′(τ) dτ

≤ 2δD‖ξ‖α(x− y)ea(ρ(t)−ρ(s))+ερ(s)
∫ ∞
s

e−2ερ(τ)ρ′(τ) dτ

≤ δD

ε
‖ξ‖α(x− y)ea(ρ(t)−ρ(s))+ερ(s),

and hence,

α(Jx− Jy) ≤ δD

ε
α(x− y).

Taking δ sufficiently small so that δD/ε < 1 the operator J becomes a contrac-
tion. In addition, by (6) we have α(J0) ≤ D, and hence,

α(Jx) ≤ α(J0) + α(Jx− J0)

≤ D + (δD/ε)α(x)

≤ D +D = 2D.

Therefore, J(B) ⊂ B, and there is a unique x = xφ ∈ B such that Jx = x.
Now we establish (19). Writing yλ = xφ(·, ξ, λ), we have

‖(yλ(τ), φλ(τ, yλ(τ)))‖ ≤ 2‖yλ(τ)‖,

and

‖(yλ(τ), φλ(τ, yλ(τ)))− (yµ(τ), φµ(τ, yµ(τ)))‖
≤ ‖yλ(τ)− yµ(τ)‖+ ‖φλ(τ, yλ(τ))− φλ(τ, yµ(τ))‖

+ ‖φλ(τ, yµ(τ))− φµ(τ, yµ(τ))‖
≤ 2‖yλ(τ)− yµ(τ)‖+ ‖yµ(τ)‖ · ‖λ− µ‖.(21)
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Hence, by (8), (9), (11)–(12), and (15) we obtain

a(τ) := ‖f(τ, yλ(τ), φλ(τ, yλ(τ)), λ)− f(τ, yµ(τ), φµ(τ, yµ(τ)), µ)‖
≤ ‖f(τ, yλ(τ), φλ(τ, yλ(τ)), λ)− f(τ, yλ(τ), φλ(τ, yλ(τ)), µ)‖

+ ‖f(τ, yλ(τ), φλ(τ, yλ(τ)), µ)− f(τ, yµ(τ), φµ(τ, yµ(τ)), µ)‖

≤ δe−3ερ(τ)ρ′(τ)‖(yλ(τ), φλ(τ, yλ(τ)))‖ · ‖λ− µ‖

+ δe−3ερ(τ)‖(yλ(τ), φλ(τ, yλ(τ)))− (yµ(τ), φµ(τ, yµ(τ)))‖

≤ 2δρ′(τ)e−3ερ(τ)‖yλ(τ)‖ · ‖λ− µ‖

+ 2δρ′(τ)e−3ερ(τ)‖yλ(τ)− yµ(τ)‖

+ δρ′(τ)e−3ερ(τ)‖yµ(τ)‖ · ‖λ− µ‖

≤ 6Dδρ′(τ)e−3ερ(τ)ea(ρ(τ)−ρ(s))+ερ(s)‖ξ‖ · ‖λ− µ‖

+ 2δρ′(τ)e−3ερ(τ)‖yλ(τ)− yµ(τ)‖.(22)

Moreover, by (6) we have

‖yλ(t)− yµ(t)‖ ≤
∫ t

s

‖P (t)T (t, τ)‖a(τ) dτ

≤ 6D2δ‖ξ‖ · ‖λ− µ‖ea(ρ(t)−ρ(s))+ερ(s)
∫ t

s

ρ′(τ)e−2ερ(τ) dτ

+ 2δD

∫ t

s

ρ′(τ)ea(ρ(t)−ρ(τ))−2ερ(τ)‖yλ(τ)− yµ(τ)‖ dτ

≤ 3D2δ

ε
‖ξ‖ · ‖λ− µ‖ea(ρ(t)−ρ(s))

+ 2δDea(ρ(t)−ρ(s))
∫ t

s

ρ′(τ)e−a(ρ(τ)−ρ(s))‖yλ(τ)− yµ(τ)‖ dτ.

Setting Γ(t) = e−a(ρ(t)−ρ(s))‖yλ(t)− yµ(t)‖, we obtain

Γ(t) ≤ 3D2δ

ε
‖ξ‖ · ‖λ− µ‖+ 2δD

∫ t

s

ρ′(τ)Γ(τ) dτ,

and it follows by Gronwall’s lemma that

Γ(t) ≤ 3D2δ

ε
‖ξ‖ · ‖λ− µ‖e2δD

∫ t
s
ρ′(τ) dτ

=
3D2δ

ε
‖ξ‖ · ‖λ− µ‖e2δD(ρ(t)−ρ(s)).

This yields inequality (19). �

Step 2: Auxiliary properties. Now we describe several additional properties of
the function xφ. We equip the space X with the distance

d(φ, ψ) = sup

{
‖φλ(t, x)− ψλ(t, x)‖

‖x‖
: t ≥ 0, x ∈ E(t) \ {0}, and λ ∈ Y

}
.
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We can easily verify that X is a complete metric space with this distance.

Lemma 2. For every δ > 0 sufficiently small, given φ, ψ ∈ X, t ≥ s, ξ, ξ̄ ∈
E(s), and λ ∈ Y we have

(23) ‖xφ(t, ξ, λ)− xφ(t, ξ̄, λ)‖ ≤ De(a+2δD)(ρ(t)−ρ(s))+ερ(s)‖ξ − ξ̄‖,

and

(24) ‖xφ(t, ξ, λ)− xψ(t, ξ, λ)‖ ≤ 2δD2

ε
e(a+4δD)(ρ(t)−ρ(s))‖ξ‖d(φ, ψ).

Proof. Proceeding in a similar manner to that in (20), for each τ ≥ s we have

‖f(τ, xφ(τ, ξ, λ), φλ(τ, xφ(τ, ξ, λ)), λ)− f(τ, x̄φ(τ, ξ̄, λ), φλ(τ, x̄φ(τ, ξ̄, λ)), λ)‖

≤ 2δρ′(τ)e−3ερ(τ)‖xφ(τ, ξ, λ)− x̄φ(τ, ξ̄, λ)‖.

Setting Γ(t) = ‖xφ(t, ξ, λ)− xφ(t, ξ̄, λ)‖, and using (6) we obtain

Γ(t) ≤ ‖P (t)T (t, s)‖ · ‖ξ − ξ̄‖+

∫ t

s

‖P (t)T (t, τ)‖2δρ′(τ)e−2ερ(τ)ρ′(τ)Γ(τ) dτ

≤ Dea(ρ(t)−ρ(s))+ερ(s)‖ξ − ξ̄‖+ 2δD

∫ t

s

ea(ρ(t)−ρ(τ))−2ερ(τ)ρ′(τ)Γ(τ) dτ

≤ ea(ρ(t)−ρ(s))
(
Deερ(s)‖ξ − ξ̄‖+ 2δD

∫ t

s

e−a(ρ(τ)−ρ(s))ρ′(τ)Γ(τ) dτ

)
.

It follows from Gronwall’s lemma applied to the function e−a(ρ(t)−ρ(s))Γ(t) that

Γ(t) ≤ De(a+2δD)(ρ(t)−ρ(s))+ερ(s)‖ξ − ξ̄‖.

This establishes inequality (23).
Similarly, we have

‖f(τ, xφ(τ, ξ, λ), φλ(τ, xφ(τ, ξ, λ)), λ)− f(τ, xψ(τ, ξ, λ), ψλ(τ, xψ(τ, ξ, λ)), λ)‖

≤ 2δρ′(τ)e−3ερ(τ)

× ‖(xφ(τ, ξ, λ)− xψ(τ, ξ, λ), φλ(τ, xφ(τ, ξ, λ))− ψλ(τ, xψ(τ, ξ, λ)))‖,

and

‖φλ(τ, xφ(τ, ξ, λ))− ψλ(τ, xψ(τ, ξ, λ))‖
≤ ‖φλ(τ, xφ(τ, ξ, λ))− ψλ(τ, xφ(τ, ξ, λ))‖

+ ‖φλ(τ, xφ(τ, ξ, λ))− ψλ(τ, xψ(τ, ξ, λ))‖
≤ ‖xφ(τ, ξ, λ)‖d(φ, ψ) + ‖xφ(τ, ξ, λ)− xψ(τ, ξ, λ)‖.

Therefore,

‖f(τ, xφ(τ, ξ, λ), φλ(τ, xφ(τ, ξ, λ)), λ)− f(τ, xψ(τ, ξ, λ), ψλ(τ, xψ(τ, ξ, λ)), λ)‖

≤ 2δρ′(τ)e−3ερ(τ)(‖xφ(τ, ξ, λ)‖d(φ, ψ) + 2‖xφ(τ, ξ, λ)− xψ(τ, ξ, λ)‖).
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Setting Γ(t) = ‖xφ(t, ξ, λ)− xψ(t, ξ, λ)‖, we obtain

Γ(t) ≤ 2δ

∫ t

s

‖P (t)T (t, τ)‖ρ′(τ)e−3ερ(τ)‖xφ(τ, ξ, λ)‖d(φ, ψ) dτ

+ 4δ

∫ t

s

‖P (t)T (t, τ)‖e−3ερ(τ)ρ′(τ)‖xφ(τ, ξ, λ)− xψ(τ, ξ, λ)‖ dτ

≤ 4δD2‖ξ‖d(φ, ψ)

∫ t

s

ea(ρ(t)−ρ(τ))−2ερ(τ)ea(ρ(τ)−ρ(s))+ερ(s)ρ′(τ) dτ

+ 4δD

∫ t

s

ea(ρ(t)−ρ(τ))−2ερ(τ)ρ′(τ)Γ(τ) dτ,

and thus,

e−a(ρ(t)−ρ(s))Γ(t) ≤ 4δD2‖ξ‖d(φ, ψ)

∫ ∞
s

e−2ε(ρ(τ)−ρ(s)) dτ

+ 4δD

∫ t

s

e−a(ρ(τ)−ρ(s))Γ(τ) dτ

≤ 2δD2

ε
‖ξ‖d(φ, ψ) + 4δD

∫ t

s

e−a(ρ(τ)−ρ(s))Γ(τ) dτ.

Inequality (24) follows now from Gronwall’s lemma applied to e−a(ρ(t)−ρ(s))Γ(t).
�

Step 3: Equivalent problem. Now we describe an equivalent problem to (18).

Lemma 3. For every δ > 0 sufficiently small, given φ ∈ X and λ ∈ Y the
following properties are equivalent:

1. for every s ≥ 0, ξ ∈ E(s) and t ≥ s we have

φλ(t, xφ(t, ξ, λ)) = T (t, s)φλ(s, ξ)

+

∫ t

s

Q(t)T (t, τ)f(τ, xφ(τ, ξ, λ), φλ(τ, xφ(τ, ξ, λ)), λ) dτ ;(25)

2. for every s ≥ 0 and ξ ∈ E(s) we have

(26) φλ(s, ξ) = −
∫ ∞
s

Q(s)T (τ, s)−1f(τ, xφ(τ, ξ, λ), φλ(τ, xφ(τ, ξ, λ)), λ) dτ.

Proof. For each τ ≥ s we have

‖f(τ, xφ(τ, ξ, λ), φλ(τ, xφ(τ, ξ, λ)), λ)‖

≤ 2δρ′(τ)e−3ερ(τ)‖xφ(τ, ξ, λ)‖

≤ 4δDρ′(τ)ea(ρ(τ)−ρ(s))+ερ(s)e−3ερ(τ)‖ξ‖.
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It follows from (7) that∫ ∞
s

‖Q(s)T (τ, s)−1f(τ, xφ(τ, ξ, λ), φλ(τ, xφ(τ, ξ, λ)), λ)‖ dτ

≤ 4δD2‖ξ‖
∫ ∞
s

e(a−b−ε)(ρ(τ)−ρ(s))ρ′(τ) dτ <∞,

and thus the integral in (26) is well-defined. Now we assume that identity (25)
holds, and we write it in the equivalent form

φλ(s, ξ) = T (t, s)−1φλ(t, xφ(t, ξ, λ))

−
∫ t

s

Q(s)T (τ, s)−1f(τ, xφ(τ, ξ, λ), φλ(τ, xφ(τ, ξ, λ)), λ) dτ.(27)

By (7), for every t ≥ s we have

‖T (t, s)−1φλ(t, xφ(t, ξ, λ))‖ ≤ De−b(ρ(t)−ρ(s))+ερ(t)‖xφ(t, ξ, λ)‖

≤ 2D2‖ξ‖e(a−b)(ρ(t)−ρ(s))+ερ(s)+ερ(t)

≤ 2D2‖ξ‖e2ερ(s)e(a−b+ε)(ρ(t)−ρ(s)).

By (13), we have a− b+ ε < 0, and letting t→ +∞ in (27) yields (26).
Now we assume that identity (26) holds. We obtain

T (t, s)φλ(s, ξ) +

∫ t

s

Q(t)T (t, τ)f(τ, xφ(τ, ξ, λ), φλ(τ, xφ(τ, ξ, λ)), λ) dτ

= −
∫ ∞
t

Q(t)T (τ, t)−1f(τ, xφ(τ, ξ, λ), φλ(τ, xφ(τ, ξ, λ)), λ) dτ.(28)

It follows from (26) with (s, ξ) replaced by (t, xφ(t, ξ, λ)) that

φλ(t, xφ(t, ξ, λ))

= −
∫ ∞
t

Q(t)T (τ, t)−1f(τ, xφ(τ, ξ, λ), φλ(τ, xφ(τ, ξ, λ)), λ) dτ

for every t ≥ s. Together with (28) this yields identity (25). �

Step 4: Construction of a Lipschitz manifold. Now we solve problem (26). In
view of Lemma 3 this corresponds to the construction of a Lipschitz stable
manifold.

Lemma 4. For every δ > 0 sufficiently small, there exists a unique φ ∈ X

satisfying (26) for every s ≥ 0, ξ ∈ E(s), and λ ∈ Y .

Proof. We consider the operator T in X defined for each φ ∈ X by

(29) (Tφ)λ(s, ξ)=−
∫ ∞
s

Q(s)T (τ, s)−1f(τ, xφ(τ, ξ, λ), φλ(τ, xφ(τ, ξ, λ)), λ) dτ

for (s, ξ, λ) ∈ R+
0 × E(s) × Y . One can verify that the function (Tφ)λ is

continuous for each φ ∈ X and λ ∈ Y . Since xφ(t, 0, λ) = 0 for every t ≥ s and
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λ ∈ Y (see (16)), it follows from (29) that (Tφ)λ(s, 0) = 0 for every s ≥ 0 and
λ ∈ Y . By Lemma 2 we have

‖f(τ, xφ(τ, ξ, λ), φλ(τ, xφ(τ, ξ, λ)))− f(τ, xφ(τ, ξ̄, λ), φλ(τ, xφ(τ, ξ̄, λ)), λ)‖

≤ 2δDρ′(τ)e−3ερ(τ)e(a+2δD)(ρ(τ)−ρ(s))+ερ(s)‖ξ − ξ̄‖,

and using (7) we obtain

‖(Tφ)λ(s, ξ)− (Tφ)λ(s, ξ̄)‖

≤ 2δD2‖ξ − ξ̄‖
∫ ∞
s

ρ′(τ)e(a−b+2δD)(ρ(τ)−ρ(s))+ερ(τ)+ερ(s)−3ερ(τ) dτ

= 2δD2‖ξ − ξ̄‖
∫ ∞
s

ρ′(τ)e(a−b+2δD−ε)(ρ(τ)−ρ(s)) dτ

=
2δD2

|a− b+ 2δD − ε|
‖ξ − ξ̄‖,

where we have chosen δ sufficiently small so that

(30) a− b+ 2δD − ε < 0 and 2δD2/|a− b+ 2δD − ε| < 1.

In particular,

‖(Tφ)λ(s, ξ)− (Tφ)λ(s, ξ̄)‖ ≤ ‖ξ − ξ̄‖

for every s ≥ 0 and ξ, ξ̄ ∈ X. Moreover, by (19) and (22) we have

a(τ) ≤ 6Dδρ′(τ)e−3ερ(τ)ea(ρ(τ)−ρ(s))+ερ(s)‖ξ‖ · ‖λ− µ‖

+ 2δρ′(τ)e−3ερ(τ)‖yλ(τ)− yµ(τ)‖

≤ K ′δρ′(τ)e−3ερ(τ)e(a+2δD)(ρ(τ)−ρ(s))+ερ(s)‖ξ‖ · ‖λ− µ‖,

and hence,

‖(Tφ)λ(s, ξ)− (Tφ)µ(s, ξ)‖

≤
∫ ∞
s

‖Q(s)T (τ, s)−1‖a(τ) dτ

≤ K ′δD‖ξ‖ · ‖λ− µ‖

×
∫ ∞
s

ρ′(τ)e(a+2δD)(ρ(τ)−ρ(s))+ερ(s)−3ερ(τ)e−b(ρ(τ)−ρ(s))+ερ(τ) dτ

≤ K ′δD‖ξ‖ · ‖λ− µ‖
∫ ∞
s

ρ′(τ)e(a+2δD−b−ε)(ρ(τ)−ρ(s)) dτ.

By (30) this yields

‖(Tφ)λ(s, ξ)− (Tφ)µ(s, ξ)‖ ≤ ‖λ− µ‖ · ‖ξ‖

provided that δ is sufficiently small. Therefore, T (X) ⊂ X.
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Now we show that T is a contraction. By (11) and Lemma 2 we have

L(τ) := ‖f(τ, xφ(τ, ξ, λ), φλ(τ, xφ(τ, ξ, λ)), λ)

− f(τ, xψ(τ, ξ, λ), ψλ(τ, xψ(τ, ξ, λ)), λ)‖

≤ δρ′(τ)e−3ερ(τ)‖xψ(τ, ξ, λ)‖d(φ, ψ)

+
8δD2

ε
ρ′(τ)e−3ερ(τ)e(a+4δD)(ρ(τ)−ρ(s))‖ξ‖d(φ, ψ)

≤ 2δρ′(τ)De−3ερ(τ)ea(ρ(τ)−ρ(s))+ερ(s)‖ξ‖d(φ, ψ)

+
8δD2

ε
ρ′(τ)e−3ερ(τ)e(a+4δD)(ρ(τ)−ρ(s))‖ξ‖d(φ, ψ)

≤ L′δρ′(τ)e−3ερ(τ)e(a+4δD)(ρ(τ)−ρ(s))+ερ(s)‖ξ‖d(φ, ψ)

for some constant L′ > 0. Hence,

‖(Tφ)λ(s, ξ)− (Tψ)λ(s, ξ)‖

≤
∫ ∞
s

‖Q(s)T (τ, s)−1‖L(τ) dτ

≤ DL′δ‖ξ‖d(φ, ψ)

∫ ∞
s

ρ′(τ)e(a−b+4δD)(ρ(τ)−ρ(s))+ερ(τ)+ερ(s)−3ερ(τ) dτ

≤ DL′δ‖ξ‖d(φ, ψ)

∫ ∞
s

ρ′(τ)e(a−b+4δD−ε)(ρ(τ)−ρ(s)) dτ

=
DL′δ

|a− b+ 4δD − ε|
‖ξ‖d(φ, ψ),

taking δ sufficiently small so that

a− b+ 4δD − ε < 0 and DL′δ/|a− b+ 4δD − ε| < 1.

Then T is a contraction, and there is a unique φ ∈ X satisfying Tφ = φ. �

Step 5: Additional properties. We obtain the remaining properties in the the-
orem. By Lemma 2 we have

‖Ψλ
t−s(s, ξ, φλ(s, ξ))−Ψλ

t−s(s, ξ̄, φλ(s, ξ̄))‖
= ‖(t, x(t, ξ, λ), φλ(t, x(t, ξ, λ)))− (t, x(t, ξ̄, λ), φλ(t, x(t, ξ̄, λ)))‖
≤ 2‖x(t, ξ, λ)− x(t, ξ̄, λ)‖

≤ 2De(a+2δD)(ρ(t)−ρ(s))+ερ(s)‖ξ − ξ̄‖,
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and by (21) and Lemma 1,

‖Ψλ
t−s(s, ξ, φλ(s, ξ))−Ψµ

t−s(s, ξ, φµ(s, ξ))‖
= ‖(t, x(t, ξ, λ), φλ(t, x(t, ξ, λ)))− (t, x(t, ξ, µ), φµ(t, x(t, ξ, µ)))‖
≤ 2‖x(t, ξ, λ)− x(t, ξ, µ)‖+ ‖xφ(t, ξ, µ)‖ · ‖λ− µ‖

≤
(

12D2δ

ε
+ 2D

)
e(a+2δD)(ρ(t)−ρ(s))+ερ(s)‖ξ‖ · ‖λ− µ‖.

This establishes property 1 in the theorem.

Step 6: Preliminaries for the regularity. Now we establish the C1 regularity of
the stable manifolds. We consider the space F of continuous functions

Φ:
{

(s, ξ, λ) ∈ R+
0 ×X × Y : ξ ∈ E(s)

}
→
∐
s≥0

L(s),

where L(s) is the family of linear transformations from E(s) to F (s), such that
Φ(s, ξ, λ) ∈ L(s) for every s ≥ 0, ξ ∈ E(s), and λ ∈ Y , with

(31) ‖Φ‖ := sup

{
‖Φ(s, ξ, λ)‖ : (s, ξ, λ) ∈ R+

0 × E(s)× Y
}
≤ 1.

We can easily verify that F is a complete metric space with the distance induced
by this norm. We also consider the space G of continuous functions

U :
{

(s, ξ, λ) ∈ R+
0 ×X × Y : ξ ∈ E(s)

}
→
∐
s≥0

L(s)

such that U(s, ξ, λ) ∈ L(s) for every s ≥ 0, ξ ∈ E(s), and λ ∈ Y , with

(32) ‖U‖ := sup

{
‖U(s, ξ, λ)‖
‖ξ‖

: (s, ξ, λ) ∈ R+
0 × (E(s) \ {0})× Y

}
≤ 1.

Again, we can easily verify that G is a complete metric space with the distance
induced by this norm.

We observe that the function x = xφ given by Lemma 1 is the solution of
the differential equation

(33) x′ = P (t)A(t)x+ P (t)f(t, x, φλ(t, x), λ)

with x(s) = ξ, for each λ ∈ Y . By the continuous dependence of the solu-
tions of a differential equation on the initial conditions and on parameters, and
Lemma 2, the function (t, φ, s, ξ, λ) 7→ xφ(t, ξ, λ) is continuous.

Step 7: Auxiliary operators. Now we define a linear operator A(φ,Φ) for each
(φ,Φ) ∈ X× F by

A(φ,Φ)(s, ξ, λ)

= −
∫ ∞
s

Q(s)T (τ, s)−1

(
∂f

∂x
(yφ(τ))W (τ) +

∂f

∂y
(yφ(τ))Φ(zφ(τ))W (τ)

)
dτ,
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with the notations

yφ(t) = (t, xφ(t, ξ, λ), φλ(t, xφ(t, ξ, λ)), λ) and zφ(t) = (t, xφ(t, ξ, λ), λ),

where (x, y) ∈ E(s)× F (s), and where W = Wφ,Φ,ξ,λ satisfies

W (t) = P (t)T (t, s)

+

∫ t

s

P (t)T (t, τ)

(
∂f

∂x
(yφ(τ))W (τ) +

∂f

∂y
(yφ(τ))Φ(zφ(τ))W (τ)

)
dτ(34)

for every τ ≥ s. We note that W (t) is a linear operator from E(s) to E(t),
with W (s) = IdE(s).

We also define a linear operator B(φ,Φ, U) for each (φ,Φ, U) ∈ X × F × G

by

B(φ,Φ, U)(s, ξ, λ)

= −
∫ ∞
s

Q(s)T (τ, s)−1

(
∂f

∂x
(yφ(τ))Z(τ)

+
∂f

∂y
(yφ(τ))

(
Φ(zφ(τ))Z(τ) + U(zφ(τ))

)
+
∂f

∂λ
(yφ(τ))

)
dτ,

where Z = Zφ,Φ,U,ξ,λ satisfies

Z(t) =

∫ t

s

P (t)T (t, τ)

(
∂f

∂x
(yφ(τ))Z(τ)

+
∂f

∂y
(yφ(τ))

(
Φ(zφ(τ))Z(τ) + U(zφ(τ))

)
+
∂f

∂λ
(yφ(τ))

)
dτ(35)

for every t ≥ s. By the continuity of the solutions of a differential equation
with respect to parameters, and the continuity of (t, φ, s, ξ, λ) 7→ xφ(t, ξ, λ), φ,
Φ and U , the functions

(36) (t, φ, s, ξ, λ) 7→Wφ,Φ,ξ,λ(t) and (t, φ, s, ξ, λ) 7→ Zφ,Φ,U,ξ,λ(t)

are also continuous.

Lemma 5. The operator A is well-defined, and A(X× F) ⊂ F.

Proof. Set

C =

∫ ∞
s

∥∥∥∥Q(s)T (τ, s)−1

(
∂f

∂x
(yφ(τ))W (τ) +

∂f

∂y
(yφ(τ))Φ(zφ(τ))W (τ)

)∥∥∥∥ dτ.
It follows from (7) and (8) that

C ≤ 2δD

∫ ∞
s

e−b(ρ(τ)−ρ(s))+ερ(τ)−3ερ(τ)ρ′(τ)‖W (τ)‖ dτ

= 2δD

∫ ∞
s

e−b(ρ(τ)−ρ(s))−2ερ(τ)ρ′(τ)‖W (τ)‖ dτ.(37)
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On the other hand, by (35) we have

‖W (t)‖ ≤ Dea(ρ(t)−ρ(s))+ερ(s)

+ 2δD

∫ t

s

ea(ρ(t)−ρ(τ))+ετ−3ερ(τ)ρ′(τ)‖W (τ)‖ dτ.(38)

Setting Γ(t) = e−a(ρ(t)−ρ(s))‖W (t)‖ we obtain

Γ(t) ≤ Deερ(s) + 2δD

∫ t

s

e−2ερ(τ)ρ′(τ)Γ(τ) dτ

≤ Deερ(s) + 2δD

∫ t

s

ρ′(τ)Γ(τ) dτ,

and it follows from Gronwall’s lemma that

(39) ‖W (t)‖ ≤ Deερ(s)e(a+2δD)(ρ(t)−ρ(s)).

By (30) and (37) we have

C ≤ 2δD2

∫ ∞
s

ρ′(τ)e(−b+a−ε+2δD)(ρ(τ)−ρ(s)) dτ

=
2δD2

|−b+ a− ε+ 2δD|
< 1.

Therefore, A(φ,Φ) is well-defined, and since

‖A(φ,Φ)(s, ξ, λ)‖ ≤ C < 1

for every s ≥ 0, ξ ∈ E(s), and λ ∈ Y , we obtain ‖A(φ,Φ)‖ ≤ 1. This shows
that A(X× F) ⊂ F. �

Lemma 6. The operator B is well-defined, and B(X× F × G) ⊂ G.

Proof. Set

C =

∫ ∞
s

∥∥∥∥Q(s)T (τ, s)−1

(
∂f

∂x
(yφ(τ))W (τ)

+
∂f

∂y
(yφ(τ))

(
Φ(zφ(τ))W (τ) + U(zφ(τ))

)
+
∂f

∂λ
(yφ(τ))

)∥∥∥∥ dτ.
It follows from (7), (8), (9), (31), and (32) that

C ≤ 2δD

∫ ∞
s

ρ′(τ)e−b(ρ(τ)−ρ(s))+ερ(τ)−3ερ(τ)‖Z(τ)‖ dτ

+ 4δD2‖ξ‖
∫ ∞
s

ρ′(τ)e−b(ρ(τ)−ρ(s))+ερ(τ)−3ερ(τ)+a(ρ(τ)−ρ(s))+ερ(s) dτ

= 2δD

∫ ∞
s

ρ′(τ)e−b(ρ(τ)−ρ(s))−2ερ(τ)‖Z(τ)‖ dτ

+ 4δD2‖ξ‖
∫ ∞
s

ρ′(τ)e(a−b−ε)(ρ(τ)−ρ(s)) dτ.(40)
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On the other hand, by (31), (32), and (35) we have

‖Z(t)‖ ≤ 2δD

∫ t

s

ρ′(τ)ea(ρ(t)−ρ(τ))+ερ(τ)−3ερ(τ)‖Z(τ)‖ dτ

+ 4δD2‖ξ‖
∫ t

s

ρ′(τ)ea(ρ(t)−ρ(τ))−2ερ(τ)+a(ρ(τ)−ρ(s))+ερ(s) dτ.

Setting Γ(t) = e−a(ρ(t)−ρ(s))‖Z(t)‖ we obtain

Γ(t) ≤ 4δD2

ε
‖ξ‖+ 2δD

∫ t

s

e−2ερ(τ)ρ′(τ)Γ(τ) dτ

≤ 4δD2

ε
‖ξ‖+ 2δD

∫ t

s

ρ′(τ)Γ(τ) dτ,

and it follows from Gronwall’s lemma that

(41) ‖Z(t)‖ ≤ 4δD2

ε
e(a+2δD)(ρ(t)−ρ(s))‖ξ‖.

By (30) and (40) we obtain

C ≤ 8δ2D3

ε
‖ξ‖

∫ ∞
s

ρ′(τ)e(a−b+2δD)(ρ(τ)−ρ(s))−2ερ(τ) dτ

+ 4δD2‖ξ‖
∫ ∞
s

ρ′(τ)e(a−b−ε)(ρ(τ)−ρ(s)) dτ

=
8δ2D3‖ξ‖
|a− b+ 2δD|

+
4δD2‖ξ‖
|a− b− ε|

≤ ‖ξ‖,

provided that δ is sufficiently small. This shows that B(φ,Φ, U) is well-defined,
and that ‖B(φ,Φ, U)‖ ≤ 1. Therefore, B(X× F × G) ⊂ G. �

Step 8: Construction of a fiber contraction. We consider the transformation
S : X× F × G→ X× F × G defined by

S(φ,Φ, U) = (Tφ,A(φ,Φ), B(φ,Φ, U)),

where we have set (Tφ)(s, ξ, λ) = (Tφ)λ(s, ξ) with T as in (29).

Lemma 7. For every δ > 0 sufficiently small, the operator S is a fiber con-
traction.

Proof. Given φ ∈ X, Φ,Ψ ∈ F, ξ ∈ E(s), and λ ∈ Y , set

WΦ = Wφ,Φ,ξ,λ and WΨ = Wφ,Ψ,ξ,λ.
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We have

‖A(φ,Φ)(s, ξ, λ)−A(φ,Ψ)(s, ξ, λ)‖

≤ D

∫ ∞
s

e−b(ρ(τ)−ρ(s))+ερ(τ)

×
∥∥∥∥∂f∂x (yφ(τ))WΦ(τ) +

∂f

∂y
(yφ(τ))Φ(zφ(τ))WΦ(τ)

− ∂f

∂x
(yφ(τ))WΨ(τ)− ∂f

∂y
(yφ(τ))Ψ(zφ(τ))WΨ(τ)

∥∥∥∥ dτ
≤ δD

∫ ∞
s

e−b(ρ(τ)−ρ(s))−2ερ(τ)ρ′(τ)

×
(
‖WΦ(τ)−WΨ(τ)‖+ ‖Φ(zφ(τ))WΦ(τ)−Ψ(zφ(τ))WΨ(τ)‖

)
dτ

≤ δD

∫ ∞
s

e−b(ρ(τ)−ρ(s))−2ερ(τ)ρ′(τ)
(
‖WΦ(τ)−WΨ(τ)‖

+ ‖Φ(zφ(τ))‖ · ‖WΦ(τ)−WΨ(τ)‖+ ‖Φ−Ψ‖ · ‖WΨ(τ)‖
)
dτ

≤ δD

∫ ∞
s

e−b(ρ(τ)−ρ(s))−2ερ(τ)ρ′(τ)

×
(
2‖WΦ(τ)−WΨ(τ)‖+ ‖Φ−Ψ‖ · ‖WΨ(τ)‖

)
dτ.(42)

In a similar manner to that in (38) and using (39) we obtain

‖WΦ(t)−WΨ(t)‖

≤ 2δD

∫ t

s

ea(ρ(t)−ρ(τ))+ερ(τ)−3ερ(τ)ρ′(τ)‖WΦ(τ)−WΨ(τ)‖ dτ

+ δD‖Φ−Ψ‖
∫ t

s

ea(ρ(t)−ρ(τ))+ερ(τ)−3ερ(τ)ρ′(τ)‖WΨ(τ)‖ dτ

≤ 2δDea(ρ(t)−ρ(s))
∫ t

s

e−a(ρ(τ)−ρ(s))−2ερ(τ)ρ′(τ)‖WΦ(τ)−WΨ(τ)‖ dτ

+ δD2ea(ρ(t)−ρ(s))‖Φ−Ψ‖

×
∫ t

s

e−(a+ε)(ρ(τ)−ρ(s))e(a+2δD)(ρ(τ)−ρ(s))e−ερ(τ)ρ′(τ) dτ

= 2δDea(ρ(t)−ρ(s))
∫ t

s

e−a(ρ(τ)−ρ(s))−2ερ(τ)ρ′(τ)‖WΦ(τ)−WΨ(τ)‖ dτ

+ δD2ea(ρ(t)−ρ(s))‖Φ−Ψ‖
∫ t

s

e−(ε−2δD)(ρ(τ)−ρ(s))ρ′(τ) dτ.

Setting Γ(t) = e−a(ρ(t)−ρ(s))‖WΦ(t)−WΨ(t)‖, we obtain

Γ(t) ≤ δD2

|ε− 2δD|
‖Φ−Ψ‖+ 2δD

∫ t

s

ρ′(τ)Γ(τ) dτ,
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provided that δ is sufficiently small, and it follows from Gronwall’s lemma that

(43) ‖WΦ(t)−WΨ(t)‖ ≤ δD2

|ε− 2δD|
‖Φ−Ψ‖e(a+2δD)(ρ(t)−ρ(s)).

By (39) and (43), and in view of (30), it follows from (42) that

‖A(φ,Φ)(s, ξ, λ)−A(φ,Ψ)(s, ξ, λ)‖

≤ C1δ‖Φ−Ψ‖
∫ ∞
s

e(a−b−ε+2δD)(ρ(τ)−ρ(s))−2ερ(τ)ρ′(τ) dτ

+ δD2‖Φ−Ψ‖
∫ ∞
s

e(a−b−ε+2δD)(ρ(τ)−ρ(s))ρ′(τ) dτ

≤ K1δ‖Φ−Ψ‖
∫ ∞
s

e(a−b−ε+2δD)(ρ(τ)−ρ(s))ρ′(τ) dτ

≤ K1δ

|a− b− ε+ 2δD|
‖Φ−Ψ‖(44)

for some constants C1,K1 > 0.
Now we consider the operator B. Given φ ∈ X, Φ,Ψ ∈ F, U, V ∈ G, ξ ∈ E(s),

and λ ∈ Y , set

ZΦ,U = Zφ,Φ,U,ξ,λ and ZΨ,V = Wφ,Ψ,V,ξ,λ.

We have

‖B(φ,Φ, U)(s, ξ, λ)−B(φ,Ψ, V )(s, ξ, λ)‖

≤ D

∫ ∞
s

e−b(ρ(τ)−ρ(s))+ερ(τ)

×
∥∥∥∥∂f∂x (yφ(τ))ZΦ,U (τ)− ∂f

∂x
(yφ(τ))ZΨ,V (τ)

+
∂f

∂y
(yφ(τ))

(
Φ(zφ(τ))ZΦ,U (τ) + U(zφ(τ))

)
− ∂f

∂y
(yφ(τ))

(
Ψ(zφ(τ))ZΨ,V (τ) + V (zφ(τ))

)∥∥∥∥ dτ
≤ δD

∫ ∞
s

ρ′(τ)e−b(ρ(τ)−ρ(s))−2ερ(τ)
(
2‖ZΦ,U (τ)− ZΨ,V (τ)‖

+ ‖Φ−Ψ‖ · ‖ZΦ,U (τ)‖+ ‖zφ(τ)‖ · ‖U − V ‖
)
dτ.(45)

In a similar manner to that in (45) and using (41) we obtain

‖ZΦ,U (t)− ZΨ,V (t)‖

≤ δD

∫ ∞
s

ρ′(τ)ea(ρ(t)−ρ(τ))−2ερ(τ)
(
2‖ZΦ,U (τ)− ZΨ,V (τ)‖

+ ‖Φ−Ψ‖ · ‖ZΦ,U (τ)‖+ ‖zφ(τ)‖ · ‖U − V ‖
)
dτ
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≤ 2δDea(ρ(t)−ρ(s))
∫ t

s

ρ′(τ)e−a(ρ(τ)−ρ(s))−2ερ(τ)‖ZΦ,U (τ)− ZΨ,V (τ)‖ dτ

+
4δ2D3

ε
‖ξ‖ · ‖Φ−Ψ‖ea(ρ(t)−ρ(s))

∫ t

s

ρ′(τ)e2δD(ρ(τ)−ρ(s))−2ερ(τ) dτ

+ 2δD2‖ξ‖ · ‖U − V ‖ea(ρ(t)−ρ(s))
∫ t

s

ρ′(τ)e−ε(ρ(τ)−ρ(s)) dτ

≤ 2δDea(ρ(t)−ρ(s))
∫ t

s

ρ′(τ)e−a(ρ(τ)−ρ(s))−2ερ(τ)‖ZΦ,U (τ)− ZΨ,V (τ)‖ dτ

+
2δD2

ε
e(a+2δD)(ρ(t)−ρ(s))‖ξ‖ · ‖Φ−Ψ‖+

2δD2

ε
ea(ρ(t)−ρ(s))‖ξ‖ · ‖U − V ‖.

Setting

Γ(t) = e−a(ρ(t)−ρ(s))‖ZΦ,U (t)− ZΨ,V (t)‖,
yields

Γ(t) ≤ 2δD2

ε
e2δD(ρ(t)−ρ(s))‖ξ‖ · ‖Φ−Ψ‖+

2δD2

ε
‖ξ‖ · ‖U − V ‖

+ 2δD

∫ t

s

ρ′(τ)Γ(τ) dτ.(46)

We have

d

dt

(
e−2δD(ρ(t)−ρ(s))

∫ t

s

ρ′(τ)Γ(τ) dτ

)
= e−2δD(ρ(t)−ρ(s))ρ′(t)

(
Γ(t)− 2δD

∫ t

s

ρ′(τ)Γ(τ) dτ

)
≤ 2δD2

ε
ρ′(t)‖ξ‖

(
‖U − V ‖e−2δD(ρ(t)−ρ(s)) + ‖Φ−Ψ‖

)
≤ 2δD2

ε
ρ′(t)‖ξ‖(‖U − V ‖+ ‖Φ−Ψ‖),

and integrating,∫ t

s

ρ′(τ)Γ(τ) dτ ≤ 2δD2

ε
‖ξ‖(‖U − V ‖+ ‖Φ−Ψ‖)e2δD(ρ(t)−ρ(s))(ρ(t)− ρ(s)).

By (46) this yields

Γ(t) ≤ 2δD2

ε
‖ξ‖(‖U − V ‖+ ‖Φ−Ψ‖)e2δD((ρ(t)−ρ(s))[1 + 2δD(ρ(t)− ρ(s))]

≤ 2δD2

ε
‖ξ‖(‖U − V ‖+ ‖Φ−Ψ‖)e4δD(ρ(t)−ρ(s)),

and hence,

(47) ‖ZΦ,U (t)−ZΨ,V (t)‖ ≤ 2δD2

ε
‖ξ‖(‖Φ−Ψ‖+ ‖U − V ‖)e(a+4δD)(ρ(t)−ρ(s)).
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By (47) and (30), it follows from (45) that

‖B(φ,Φ, U)(s, ξ, λ)−B(φ,Ψ, V )(s, ξ, λ)‖

≤ 4δ2D3

ε
‖ξ‖ · (‖Φ−Ψ‖+ ‖U − V ‖)

∫ ∞
s

ρ′(τ)e(a−b+4δD)(ρ(τ)−ρ(s)) dτ

+
4δ2D3

ε
‖ξ‖‖Φ−Ψ‖

∫ ∞
s

ρ′(τ)e(a−b+2δD)(ρ(τ)−ρ(s)) dτ

+ 2δD2‖ξ‖ · ‖U − V ‖
∫ ∞
s

ρ′(τ)e(a−b−ε)(ρ(τ)−ρ(s)) dτ

=
4δ2D3

ε|a− b+ 4δD|
‖ξ‖(‖Φ−Ψ‖+ ‖U − V ‖)

+
4δ2D3

ε|a− b+ 2δD|
‖ξ‖ · ‖Φ−Ψ‖+

2δD2

|a− b− ε|
‖ξ‖ · ‖U − V ‖

≤ 2δD2

|a− b+ 4δD|

(
4δD +

1

ε

)
‖ξ‖(‖Φ−Ψ‖+ ‖U − V ‖).(48)

It follows from (44) and (48) that for δ sufficiently small the operator S is a
fiber contraction. �

Step 9: Continuity of the fiber contraction.

Lemma 8. For every δ > 0 sufficiently small, the operator S is continuous.

Proof. Setting

Wφ = Wφ,Φ,ξ and Wψ = Wψ,Φ,ξ,

we obtain

‖A(φ,Φ)(s, ξ, λ)−A(ψ,Φ)(s, ξ, λ)‖

≤ D

∫ ∞
s

e−b(ρ(τ)−ρ(s))+ερ(τ)

×
∥∥∥∥∂f∂x (yφ(τ))Wφ(τ) +

∂f

∂y
(yφ(τ))Φ(zφ(τ))Wφ(τ)

− ∂f

∂x
(yψ(τ))Wψ(τ)− ∂f

∂y
(yψ(τ))Φ(zψ(τ))Wψ(τ)

∥∥∥∥ dτ.
It follows from (8) and (39) that

‖A(φ,Φ)(s, ξ, λ)−A(ψ,Φ)(s, ξ, λ)‖

≤ D

∫ ∞
s

e−b(ρ(τ)−ρ(s))+ερ(τ)
∥∥∥∂f
∂x

(yφ(τ))− ∂f

∂x
(yψ(τ))

∥∥∥ · ‖Wφ(τ)‖ dτ

+D

∫ ∞
s

e−b(ρ(τ)−ρ(s))+ερ(τ)
∥∥∥∂f
∂x

(yψ(τ))
∥∥∥ · ‖Wφ(τ)−Wψ(τ)‖ dτ

+D

∫ ∞
s

e−b(ρ(τ)−ρ(s))+ερ(τ)
∥∥∥∂f
∂y

(yφ(τ))− ∂f
∂y

(yψ(τ))
∥∥∥ · ‖Φ(zφ(τ))Wφ(τ)‖ dτ
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+D

∫ ∞
s

e−b(ρ(τ)−ρ(s))+ερ(τ)
∥∥∥∂f
∂y

(yψ(τ))
∥∥∥‖Φ(zφ(τ))−Φ(zψ(τ))‖ · ‖Wφ(τ)‖ dτ

+D

∫ ∞
s

e−b(ρ(τ)−ρ(s))+ερ(τ)
∥∥∥∂f
∂y

(yψ(τ))
∥∥∥‖Φ(zψ(τ))‖ · ‖Wφ(τ)−Wψ(τ)‖ dτ,

and setting χ(τ) = min
{

1, ρ′(τ)
}

, this yields

‖A(φ,Φ)(s, ξ, λ)−A(ψ,Φ)(s, ξ, λ)‖

≤ D2e2ερ(s)

∫ ∞
s

e(a+2δD+ε−b)(ρ(τ)−ρ(s))
∥∥∥∂f
∂x

(yφ(τ))− ∂f
∂x

(yψ(τ))
∥∥∥ dτ

+ δD

∫ ∞
s

e−b(ρ(τ)−ρ(s))−2ερ(τ)χ(τ)‖Wφ(τ)−Wψ(τ)‖ dτ

+D2e2ερ(s)

∫ ∞
s

e(a+2δD+ε−b)(ρ(τ)−ρ(s))
∥∥∥∂f
∂y

(yφ(τ))− ∂f
∂y

(yψ(τ))
∥∥∥ dτ

+ δD2

∫ ∞
s

e(a+2δD−ε−b)(ρ(τ)−ρ(s))e−ερ(τ)‖Φ(zφ(τ))−Φ(zψ(τ))‖χ(τ) dτ

+ δD

∫ ∞
s

e−b(ρ(τ)−ρ(s))−2ερ(τ)χ(τ)‖Wφ(τ)−Wψ(τ)‖ dτ

≤ 2D2e2ερ(s)

∫ ∞
s

e(a+2δD+ε−b)(ρ(τ)−ρ(s))
∥∥∥∂f
∂u

(yφ(τ))− ∂f

∂u
(yψ(τ))

∥∥∥ dτ
+ 2δD

∫ ∞
s

e−b(ρ(τ)−ρ(s))−2ερ(τ)‖Wφ(τ)−Wψ(τ)‖χ(τ) dτ

+ δD2

∫ ∞
s

e(a+2δD−ε−b)(ρ(τ)−ρ(s))−ερ(τ)‖Φ(zφ(τ))−Φ(zψ(τ))‖χ(τ) dτ.(49)

Again by (8) and (39), and in view of (30), given γ > 0 there exists σ > 0
(independent of s and ξ) such that, setting η = ρ−1(ρ(s) + ρ(σ)),

2D2e2ερ(s)

∫ ∞
η

e(a+2δD+ε−b)(ρ(τ)−ρ(s))
∥∥∥∂f
∂u

(yφ(τ))− ∂f

∂u
(yψ(τ))

∥∥∥ dτ
≤ 4δD2

∫ ∞
η

e(a+2δD−ε−b)(ρ(τ)−ρ(s))ρ′(τ) dτ

=
4δD2e(a+2δD−ε−b)ρ(σ)

|a+ 2δD − ε− b|
< γ,(50)

2δD

∫ ∞
η

e−b(ρ(t)−ρ(s))−2ερ(τ)‖Wφ(τ)−Wψ(τ)‖χ(τ) dτ

≤ 2δD

∫ ∞
η

e−b(ρ(τ)−ρ(s))−2ερ(τ)‖Wφ(τ)−Wψ(τ)‖ρ′(τ) dτ

≤ 4δD2

∫ ∞
η

e(a+2δD−ε−b)(ρ(τ)−ρ(s))ρ′(τ) dτ < γ,(51)
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and

δD2

∫ ∞
η

e(a+2δD−ε−b)(ρ(τ)−ρ(s))−ερ(τ)‖Φ(zφ(τ))− Φ(zψ(τ))‖χ(τ) dτ

≤ δD2

∫ ∞
η

e(a+2δD−ε−b)(ρ(τ)−ρ(s))‖Φ(zφ(τ))− Φ(zψ(τ))‖ρ′(τ) dτ

≤ 2δD2

∫ ∞
η

e(a+2δD−ε−b)(ρ(τ)−ρ(s))ρ′(τ) dτ < γ.(52)

Now we consider the integrals from s to η. We show that given γ > 0 there
exists η > 0 (independent of s and ξ) such that each integral from s to η is
bounded by γ whenever d(φ, ψ) < γ. Setting p = ρ(τ)− ρ(s), we consider the
functions

B(p, φ)(s, ξ, λ) =
2D2e2ερ(s)

ρ′(ρ−1(p+ ρ(s)))
e(a+2δD+ε−b)p ∂f

∂u
(yφ(ρ−1(p+ ρ(s)))),

C(p, φ)(s, ξ, λ) = 2δDe−bp−2ε(p+ρ(s))Wφ(ρ−1(p+ ρ(s))),

D(p, φ)(s, ξ, λ) = δD2e(a+2δD−ε−b)pe−ε(p+ρ(s))Φ(zφ(ρ−1(p+ ρ(s))))

for each p ∈ [0, ρ(σ)] and φ ∈ X. We note that

2D2eερ(s)
∫ ρ−1(ρ(s)+ρ(σ))

s

e(a+2δD+ε−b)(ρ(τ)−ρ(s)) ∂f

∂u
(yφ(τ)) dτ

+ 2δD

∫ ρ−1(ρ(s)+ρ(σ))

s

e−b(ρ(τ)−ρ(s))−2ερ(τ)Wφ(τ)ρ′(τ) dτ

+ δD2

∫ ρ−1(ρ(s)+ρ(σ))

s

e(a+2δD−ε−b)(ρ(τ)−ρ(s))e−ερ(τ)Φ(zφ(τ))ρ′(τ) dτ

=

∫ ρ(σ)

0

[B(p, φ) + C(p, φ) +D(p, φ)](s, ξ, λ) dp.

Therefore, by (49), it is sufficient to show that

(53) φ 7→
∫ ρ(σ)

0

[
B(p, φ) + C(p, φ) +D(p, φ)

]
dp

is continuous. Since the functions Φ,

(t, φ, s, ξ, λ) 7→ xφ(t, ξ) and (t, φ, s, ξ, λ) 7→Wφ,Φ,ξ(t)

are continuous, the functions

(54) (p, φ, s, ξ, λ) 7→ B(p, φ)(s, ξ, λ), C(p, φ)(s, ξ, λ), D(p, φ)(s, ξ, λ)
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are also continuous. Furthermore, by (8), (30), and (39), given p ∈ [0, ρ(σ)]
and φ ∈ X we have

‖B(p, φ)‖ ≤ 2δD2e(a+2δD−ε−b)pe−ε(p+ρ(s)) ≤ 2δD2e−ερ(s),

‖C(p, φ)‖ ≤ 2δD2e(a+2δD−ε−b)pe−ε(p+ρ(s)) ≤ 2δD2e−ερ(s),

‖D(p, φ)‖ ≤ δD2e(a+2δD−ε−b)pe−ε(p+ρ(s)) ≤ δD2e−ερ(s).

Here we are using the norm ‖·‖ in (31). In particular, B(p, φ), C(p, φ), and
D(p, φ) are in F provided that δ is sufficiently small. We proceed with the
proof of the continuity of the integral in (53). We first note that there exists
R > 0 such that

‖B(p, φ)(s, ξ, λ)−B(q, ψ)(s, ξ, λ)‖ ≤ 4δD2e−ερ(s) < γ,

‖C(p, φ)(s, ξ, λ)−D(q, ψ)(s, ξ, λ)‖ ≤ 4δD2e−ερ(s) < γ,

‖D(p, φ)(s, ξ, λ)−D(q, ψ)(s, ξ, λ)‖ ≤ 4δD2e−ερ(s) < γ

for every s > R, p ∈ [0, ρ(σ)], ξ ∈ E(s), and λ ∈ Y . It remains to consider the
case when s ≤ R. Given s ∈ R+

0 and (φ, ξ, λ) ∈ X×E(s)× Y , we observe that
due to the continuity in (54) there exists δ > 0 such that

‖B(p, φ)(s, ξ, λ)−B(q, ψ)(s̄, ξ̄, λ̄)‖ < γ

whenever d(φ, ψ) < δ and ‖(p, s, ξ, λ) − (q, s̄, ξ̄, λ̄)‖ < δ. Since u 7→ f(t, u, λ)
vanishes for ‖u‖ ≥ c, given s it is sufficient to establish the desired continuity
for ξ inside a certain ball in E(s), possibly depending (continuously) on p and s.
This shows that it is sufficient to consider (ξ, λ) in some compact set K. We
can cover [0, ρ(σ)] × [0, R] × K with a finite number of balls Bi, i = 1, . . . , r
centered at points in this set, such that

‖B(p, φ)(s, ξ, λ)−B(p̄, ψ)(s̄, ξ̄, λ̄)‖ < γ

whenever d(φ, ψ) < δi and (p, s, ξ, λ), (p̄, s̄, ξ̄, λ̄) ∈ Bi, for i = 1, . . . , r and some
numbers δi > 0. Therefore,

‖B(p, φ)(s, ξ, λ)−B(p, ψ)(s, ξ, λ)‖ < γ

whenever d(φ, ψ) < δ = min{δ1, . . . , δr}, for every p ∈ [0, ρ(σ)], s ≤ R, and
(ξ, λ) ∈ K. This shows that

sup
s≤R

sup
(ξ,λ)∈K

‖B(p, φ)(s, ξ, λ)−B(p, ψ)(s, ξ, λ)‖ ≤ γ

whenever d(φ, ψ) < δ. The argument is identical for the operators C(p, φ) and
D(p, φ). It follows from these inequalities that the map in (53) is continuous.
Together with (50), (51), and (52) this implies that φ 7→ A(φ,Φ) is continuous.

Now we consider the operator B. Setting

Zφ = Zφ,Φ,U,ξ,λ and Zψ = Zψ,Φ,U,ξ,λ,
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we obtain

‖B(φ,Φ, U)(s, ξ, λ)−B(ψ,Φ, U)(s, ξ, λ)‖

≤ D

∫ ∞
s

e−b(ρ(τ)−ρ(s))+ερ(τ)

×
∥∥∥∥∂f∂x (yφ(τ))Zφ(τ) +

∂f

∂y
(yφ(τ))Φ(zφ(τ))Zφ(τ)

+
∂f

∂y
(yφ(τ))U(zφ(τ)) +

∂f

∂λ
(yφ(τ))− ∂f

∂x
(yψ(τ))Zψ(τ)

− ∂f

∂y
(yψ(τ))Φ(zψ(τ))Zψ(τ)− ∂f

∂y
(yψ(τ))U(zψ(τ))− ∂f

∂λ
(yψ(τ))

∥∥∥∥ dτ
≤ D

∫ ∞
s

e−b(ρ(τ)−ρ(s))+ερ(τ)
∥∥∥∂f
∂x

(yφ(τ))− ∂f

∂x
(yψ(τ))

∥∥∥ · ‖Zφ(τ)‖ dτ

+D

∫ ∞
s

e−b(ρ(τ)−ρ(s))+ερ(τ)
∥∥∥∂f
∂x

(yψ(τ))
∥∥∥ · ‖Zφ(τ)− Zψ(τ)‖ dτ

+D

∫ ∞
s

e−b(ρ(τ)−ρ(s))+ερ(τ)
∥∥∥∂f
∂y

(yφ(τ))− ∂f
∂y

(yψ(τ))
∥∥∥‖Φ(zφ(τ))‖ · ‖Zφ(τ)‖ dτ

+D

∫ ∞
s

e−b(ρ(τ)−ρ(s))+ερ(τ)
∥∥∥∂f
∂y

(yψ(τ))
∥∥∥‖Φ(zφ(τ))−Φ(zψ(τ))‖ · ‖Zφ(τ)‖ dτ

+D

∫ ∞
s

e−b(ρ(τ)−ρ(s))+ερ(τ)
∥∥∥∂f
∂y

(yψ(τ))
∥∥∥‖Φ(zψ(τ))‖ · ‖Zφ(τ)−Zψ(τ)‖ dτ

+D

∫ ∞
s

e−b(ρ(τ)−ρ(s))+ερ(τ)
∥∥∥∂f
∂y

(yφ(τ))− ∂f

∂y
(yψ(τ))

∥∥∥ · ‖U(zφ(τ))‖ dτ

+D

∫ ∞
s

e−b(ρ(τ)−ρ(s))+ερ(τ)
∥∥∥∂f
∂y

(yψ(τ))
∥∥∥ · ‖U(zφ(τ))− U(zψ(τ))‖ dτ

+D

∫ ∞
s

e−b(ρ(τ)−ρ(s))+ερ(τ)
∥∥∥∂f
∂λ

(yφ(τ))− ∂f

∂λ
(yψ(τ))

∥∥∥ dτ.
Setting again χ(τ) = min{1, ρ′(τ)}, it follows from (8) and (41) that

‖B(φ,Φ, U)(s, ξ, λ)−B(ψ,Φ, U)(s, ξ, λ)‖

≤ 4δD3

ε
‖ξ‖

∫ ∞
s

e(a−b+2δD)(ρ(τ)−ρ(s)))+ερ(τ)
∥∥∥∂f
∂x

(yφ(τ))− ∂f

∂x
(yψ(τ))

∥∥∥ dτ
+ δD

∫ ∞
s

χ(τ)e−b(ρ(τ)−ρ(s))−2ερ(τ)‖Zφ(τ)− Zψ(τ)‖ dτ

+
4δD3

ε
‖ξ‖

∫ ∞
s

e(a−b+2δD)(ρ(τ)−ρ(s))+ερ(τ)
∥∥∥∂f
∂y

(yφ(τ))− ∂f

∂y
(yψ(τ))

∥∥∥ dτ
+

4δ2D3

ε
‖ξ‖

∫ ∞
s

χ(τ)e(a−b+2δD)(ρ(τ)−ρ(s))−2ερ(τ)‖Φ(zφ(τ))− Φ(zψ(τ))‖ dτ

+ δD

∫ ∞
s

χ(τ)e−b(ρ(τ)−ρ(s))−2ερ(τ)‖Zφ(τ)− Zψ(τ)‖ dτ
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+ 2D2‖ξ‖eερ(s)
∫ ∞
s

e(a−b)(ρ(τ)−ρ(s))+ερ(τ)
∥∥∥∂f
∂y

(yφ(τ))− ∂f

∂y
(yψ(τ))

∥∥∥ dτ
+Dδ

∫ ∞
s

χ(τ)e−b(ρ(τ)−ρ(s))−2ερ(τ)‖U(zφ(τ))− U(zψ(τ))‖ dτ

+D

∫ ∞
s

e−b(ρ(τ)−ρ(s))+ερ(τ)
∥∥∥∂f
∂λ

(yφ(τ))− ∂f

∂λ
(yψ(τ))

∥∥∥ dτ
≤ L‖ξ‖eερ(s)

∫ ∞
s

e(a−b+2δD)(ρ(τ)−ρ(s))+ερ(τ)
∥∥∥∂f
∂u

(yφ(τ))− ∂f

∂u
(yψ(τ))

∥∥∥ dτ
+ 2δD

∫ ∞
s

χ(τ)e−b(ρ(τ)−ρ(s))−2ερ(τ)‖Zφ(τ)− Zψ(τ)‖ dτ

+
4δ2D3

ε
‖ξ‖

∫ ∞
s

χ(τ)e(a−b+2δD)(ρ(τ)−ρ(s))−2ερ(τ)‖Φ(zφ(τ))− Φ(zψ(τ))‖ dτ

+Dδ

∫ ∞
s

χ(τ)e−b(ρ(τ)−ρ(s))−2ερ(τ)‖U(zφ(τ))− U(zψ(τ))‖ dτ

+D

∫ ∞
s

e−b(ρ(τ)−ρ(s))+ερ(τ)
∥∥∥∂f
∂λ

(yφ(τ))− ∂f

∂λ
(yψ(τ))

∥∥∥ dτ
for some constant L > 0. Again by (8) and (41), and in view of (30), given
γ > 0 there exists σ > 0 (independent of s and ξ) such that

L‖ξ‖e2ερ(s)
∫ ∞
ρ−1(ρ(s)+ρ(σ))

e(a+2δD+ε−b)(ρ(τ)−ρ(s))
∥∥∥∂f
∂u

(yφ(τ))− ∂f

∂u
(yψ(τ))

∥∥∥ dτ
≤ 2δL‖ξ‖

∫ ∞
ρ−1(ρ(s)+ρ(σ))

ρ′(τ)e(a+2δD−ε−b)(ρ(τ)−ρ(s)) dτ

=
2δLe(a+2δD−ε−b)ρ(σ)

|a+ 2δD − ε− b|
‖ξ‖ ≤ γ‖ξ‖,(55)

2δD

∫ ∞
ρ−1(ρ(s)+ρ(σ))

χ(τ)e−b(ρ(τ)−ρ(s))−2ερ(τ)‖Zφ(τ)− Zψ(τ)‖ dτ

≤ 2δD

∫ ∞
ρ−1(ρ(s)+ρ(σ))

ρ′(τ)e−b(ρ(τ)−ρ(s))−ερ(τ)‖Zφ(τ)− Zψ(τ)‖ dτ

≤ 16δ2D3

ε
‖ξ‖

∫ ∞
ρ−1(ρ(s)+ρ(σ))

ρ′(τ)e(a+2δD−ε−b)(ρ(τ)−ρ(s)) dτ ≤ γ‖ξ‖,(56)

4δ2D3

ε
‖ξ‖

∫ ∞
ρ−1(ρ(s)+ρ(σ))

χ(τ)e(a−b+2δD)(ρ(τ)−ρ(s))−2ερ(τ)

× ‖Φ(zφ(τ))− Φ(zψ(τ))‖ dτ

≤ 4δ2D3

ε
‖ξ‖

∫ ∞
ρ−1(ρ(s)+ρ(σ))

ρ′(τ)e(a−b+2δD)(ρ(τ)−ρ(s))−ερ(τ)

× ‖Φ(zφ(τ))− Φ(zψ(τ))‖ dτ
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≤ 8δ2D3

ε
‖ξ‖

∫ ∞
ρ−1(ρ(s)+ρ(σ))

ρ′(τ)e(a+2δD−ε−b)(ρ(τ)−ρ(s)) dτ ≤ γ‖ξ‖,(57)

Dδ

∫ ∞
ρ−1(ρ(s)+ρ(σ))

χ(τ)e−b(ρ(τ)−ρ(s))−2ερ(τ)‖U(zφ(τ))− U(zψ(τ))‖ dτ

≤ Dδ

∫ ∞
ρ−1(ρ(s)+ρ(σ))

ρ′(τ)e−b(ρ(τ)−ρ(s))−ερ(τ)‖U(zφ(τ))− U(zψ(τ))‖ dτ

≤ 4δD2‖ξ‖
∫ ∞
ρ−1(ρ(s)+ρ(σ))

ρ′(τ)e(a−b−ε)(ρ(τ)−ρ(s)) dτ ≤ γ‖ξ‖,(58)

and

D

∫ ∞
ρ−1(ρ(s)+ρ(σ))

e−b(ρ(τ)−ρ(s))+ερ(τ)
∥∥∥∂f
∂λ

(yφ(τ))− ∂f

∂λ
(yψ(τ))

∥∥∥ dτ
≤ 4δD2‖ξ‖

∫ ∞
ρ−1(ρ(s)+ρ(σ))

ρ′(τ)e(a−b−ε)(ρ(τ)−ρ(s)) dτ ≤ γ‖ξ‖.(59)

Now we consider the functions

C1(p, φ)(s, ξ, λ) =
L‖ξ‖e2ερ(s)e(a+2δD+ε−b)p

ρ′(ρ−1(p+ ρ(s)))
· ∂f
∂u

(yφ(ρ−1(p+ ρ(s)))),

C2(p, φ)(s, ξ, λ) = 2δDe−bp−2ε(p+ρ(s))Zφ(ρ−1(p+ ρ(s))),

C3(p, φ)(s, ξ, λ) =
4δ2D3

ε
‖ξ‖e(a+2δD−b)p−2ε(p+ρ(s))Φ(ρ−1(p+ ρ(s))),

C4(p, φ)(s, ξ, λ) = Dδe−bp−2ε(p+ρ(s))U(zφ(ρ−1(p+ ρ(s)))),

C5(p, φ)(s, ξ, λ) =
De−bp−ε(p+ρ(s))

ρ′(ρ−1(p+ ρ(s)))
· ∂f
∂λ

(yφ(ρ−1(p+ ρ(s))))

for each p ∈ [0, ρ(σ)] and φ ∈ X. By (49) and (55), (56), (57), (58), and (59),
it remains to show that the integral

∫ ρ(σ)

0

5∑
i=1

Ci(p, φ) dp

is continuous in φ. Since the function (t, φ, s, ξ, λ) 7→ xφ(t, ξ, λ), those in (36),
together with Φ and U are continuous, the functions

(p, φ, s, ξ, λ) 7→ Ci(p, φ)(s, ξ, λ)
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are also continuous. Furthermore, by (8), (41), and (30), for each p ∈ [0, ρ(σ)]
and φ ∈ X we have

‖C1(p, φ)‖ ≤ Lδe(a+2δD−ε−b)pe−ε(p+ρ(s)) ≤ Lδe−ερ(s),

‖C2(p, φ)‖ ≤ 8δ2D3

ε
e(a+2δD−ε−b)pe−ε(p+ρ(s)) ≤ 8δ2D3

ε
e−ερ(s),

‖C3(p, φ)‖ ≤ 4δ2D3

ε
e(a+2δD−ε−b)pe−ε(p+ρ(s)) ≤ 4δ2D3

ε
e−ερ(s),

‖C4(p, φ)‖ ≤ 6D3δ2

ε
e(a+2δD−b−ε)pe−ε(p+ρ(s)) ≤ 6D3δ2

ε
e−ερ(s),

‖C5(p, φ)‖ ≤ 12D3δ2

ε
e(a+2δD−b−ε)pe−ερ(s) ≤ 12D3δ2

ε
e−ερ(s),

with the norm ‖·‖ in (32). We can now show in a similar manner to that
for A that the operator φ 7→ B(φ,Φ) is continuous, and we conclude that
S is also continuous (the operator T in (29) is a contraction, and thus it is
continuous). �

Step 10: C1 regularity of the stable manifold. Now we establish the C1 regular-
ity of the function φ = (φλ)λ∈Y in Theorem 3, or more precisely of the function
φ̄ defined by φ̄(s, ξ, λ) = φλ(s, ξ). We start with an auxiliary statement.

Lemma 9. Given φ ∈ X, if φ̄ is of class C1 in ξ and λ, then Tφ is also of
class C1 in ξ and λ, and

(60) ∂(Tφ)/∂ξ = A(φ, ∂φ̄/∂ξ) and ∂(Tφ)/∂λ = B(φ, ∂φ̄/∂ξ, ∂φ̄/∂λ).

Proof. Since φ̄ is of class C1 in ξ and λ, the function y defined by y(t, ξ, λ) =
xφ(t, ξ, λ) is also of class C1 (when φ̄ is of class C1 the right-hand side of (33)
is also of class C1, and thus the solutions are C1 in the initial conditions
and on the parameters). Furthermore, for Φ = ∂φ̄/∂ξ and U = ∂φ̄/∂λ the
solutions of equations (34) and (35) are given respectively by W (t) = ∂y/∂ξ
and Z(t) = ∂y/∂λ. Therefore, repeating arguments in the proofs of Lemmas 5
and 6 we can apply Leibnitz’s rule to obtain

A(φ, ∂φ̄/∂ξ) = −
∫ ∞
s

∂

∂ξ

[
Q(s)T (τ, s)−1f(τ, x(τ), φλ(τ, x(τ)), λ)

]
dτ

= ∂(Tφ)/∂ξ,

and

B(φ, ∂φ̄/∂ξ, ∂φ̄/∂λ) = −
∫ ∞
s

∂

∂λ

[
Q(s)T (τ, s)−1f(τ, x(τ), φλ(τ, x(τ)), λ)

]
dτ

= ∂(Tφ)/∂λ,

where we have written for simplicity xφ(τ, ξ, λ) = x(τ). �
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Finally, we consider the triple (φ1,Φ1, U1) = (0, 0, 0) ∈ X × F × G. Clearly,
Φ1 = ∂φ1/∂ξ and U1 = ∂φ1/∂λ. We define recursively a sequence (φn,Φn, Un)
∈ X× F × G by

(φn+1,Φn+1, Un+1) = S(φn,Φn, Un)

= (Tφn, A(φn,Φn), B(φn,Φn, Un)).(61)

Assuming that φn is of class C1 in ξ and λ, with Φn = ∂φn/∂ξ and Un =
∂φn/∂λ, it follows from Lemma 9 that φn+1 = Tφn is of class C1 in ξ and λ,
and by (60) we have

(62) ∂φn+1/∂ξ = ∂(Tφn)/∂ξ = A(φn,Φn) = Φn+1,

and

(63) ∂φn+1/∂λ = ∂(Tφn)/∂λ = B(φn,Φn, Un) = Un+1.

Now let φ0 be the unique fixed point of T (the unique function φ in Theorem 3),
and let (Φ0, U0) be the unique fixed point of

(Φ, U) 7→ (A(φ0,Φ), B(φ0,Φ, U)).

By Proposition 1 the sequences φn, Φn, and Un converge uniformly respectively
to φ0, Φ0, and U0 on bounded subsets. For example, although the norm in X

is not the supremum norm, for each c > 0 we have

‖φ(t, x)− ψ(t, x)‖ ≤ ‖x‖d(φ, ψ) ≤ c d(φ, ψ)

whenever t ≥ 0 and x ∈ E(t) with norm ‖x‖ ≤ c. This yields the desired
uniform convergence on bounded subsets. It follows from (62) and (63) that
φ0 is of class C1 in ξ and λ, and that

(64) (∂φ0/∂ξ, ∂φ0/∂λ) = (Φ0, U0)

(we recall that if a sequence fn of C1 functions converges uniformly, and the
sequence f ′n of derivatives also converges uniformly, then the limit of fn is of
class C1, and its derivative is the limit of f ′n).

Now we assume that (∂f/∂u)(t, 0, λ) = 0 for every t ≥ 0 and λ ∈ Y .
We consider the subset F0 ⊂ F composed of the functions Φ ∈ F such that
Φ(s, 0, λ) = 0 for every s ≥ 0 and λ ∈ Y . We can easily verify that F0 is a
complete metric space with the distance induced by the norm of F. Since the
triple (φ1,Φ1, U1) = (0, 0, 0) is in X×F0×G, and S(X×F0×G) ⊂ X×F0×G,
the sequence (φn,Φn, Un) defined in (61) is also in X × F0 × G. Therefore,
Φ0(s, 0, λ) = 0 for every s ≥ 0 and λ ∈ Y , and it follows from (64) that in this
case (∂φ0/∂ξ)(s, 0, λ) = 0 for every s ≥ 0 and λ ∈ Y . �
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