• Title/Summary/Keyword: Parameter robustness

Search Result 534, Processing Time 0.025 seconds

Variable structure control of AC servo motors for high performance (가변 구조 제어를 이용한 AC 서보 모터의 고성능 제어)

  • Kim, Jung-Ho;Eun, Yong-Soon;Cho, Dong-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.351-361
    • /
    • 1996
  • A variable structure controller is developed for an AC servo motor used in CNC milling machines. The designed controller is implemented as an outer loop controller to a factory designed motor-servopack system. The robustness parameter is tuned for a fast response when the speed tracking error is large, while it is tuned for small oscillations when the speed tracking error is small. The designed controller is installed on a CNC machine using a PC. Cutting experiments show improved performance over the factory-designed controller.

  • PDF

A INTEGRAL VARIABLE STRUCTURE CONTROLLER FOR BLDDSM WITH PRESCRIBED OPTIMAL OUTPUT DYNAMICS (직접구동용 브러쉬없는 직류 전동기를 위한 적분 가변 구조 제어기)

  • Lee, Jung-Hoon;Chung, Se-Kyo;Moon, Gun-Woo;Kim, Il-Song;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.472-474
    • /
    • 1994
  • A new integral variable structure system without the reaching phase problems is presented for the prescribed control of the BLDDSM under load variation and parameter uncertainties. The control technique can yields the complete robustness of initially prescribed output dynamics in the sliding surface against the modeling errors. The comparative simulation and experiment studies of the BLDDSM position control are carried out in comparison with two previous algorithms.

  • PDF

Maximum Torque Control Of Induction Machines in Field Weakening Region (약계자 영역에서 유도전동기의 최대 토오크 운전)

  • Kim, Sang-Hoon;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.277-279
    • /
    • 1994
  • In this paper, a novel field weakening scheme for the induction machine by the voltage control strategy is presented. The proposed algorithm ensures producing the maximum torque over the entire field weakening legion. Also by introducing the direct field-oriented control in the field weakening legion with large variation in machine parameters, the drive system can obtain the robustness to machine parameter variation. Moreover, by using estimated speed, sensorless speed control can be possible in very high speed lesion. Experimental results for a laboratory induction motor drive system confirm the validity or the proposed control algorithm.

  • PDF

A Multi-Objective TRIBES/OC-SVM Approach for the Extraction of Areas of Interest from Satellite Images

  • Benhabib, Wafaa;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • v.13 no.2
    • /
    • pp.321-339
    • /
    • 2017
  • In this work, we are interested in the extraction of areas of interest from satellite images by introducing a MO-TRIBES/OC-SVM approach. The One-Class Support Vector Machine (OC-SVM) is based on the estimation of a support that includes training data. It identifies areas of interest without including other classes from the scene. We propose generating optimal training data using the Multi-Objective TRIBES (MO-TRIBES) to improve the performances of the OC-SVM. The MO-TRIBES is a parameter-free optimization technique that manages the search space in tribes composed of agents. It makes different behavioral and structural adaptations to minimize the false positive and false negative rates of the OC-SVM. We have applied our proposed approach for the extraction of earthquakes and urban areas. The experimental results and comparisons with different state-of-the-art classifiers confirm the efficiency and the robustness of the proposed approach.

Sensorless Control of Induction Motor using Adaptive FNN Controller (적응 FNN에 의한 유도전동기의 센서리스 제어)

  • Lee, Young-Sil;Lee, Jung-Chul;Lee, Hong-Gyun;Nam, Su-Myeong;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.179-181
    • /
    • 2004
  • This paper is proposed an adaptive fuzzy-neural network(A-FNN) controller based on the vector controlled induction motor drive system. The hybrid combination of fuzzy control and neural network will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed estimation of induction motor using A closed-loop state observer. The rotor position is calculated through the stator flux position and an estimated flux value of rotation reference frame. A closed-loop state observer is implemented to compute the speed feedback signal. The results of analysis prove that the proposed control system has strong robustness to rotor parameter variation, and has good steady-state accuracy and transitory response.

  • PDF

A Simple Method for Identifying Mechanical Parameters Based on Integral Calculation

  • Han, Sang-Heon;Yoo, Anno;Yoon, Sang Won;Yoon, Young-Doo
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1387-1395
    • /
    • 2016
  • A method for the identification of mechanical parameters based on integral calculation is presented. Both the moment of inertia and the friction constant are identified by the method developed here, which is based on well-known mechanical differential equations. The mechanical system under test is excited according to a pre-determined low-frequency sinusoidal motion, minimizing the distortion, and increasing the accuracy of the results. The parameters are identified using integral calculation, increasing the robustness of the results against measurement noise. Experimental data are supported by simulation, confirming the effectiveness of the proposed technique. The performance improvements shown here are of use in the design of speed and position controllers and observers. Owing to its simplicity, this method can be readily applied to commercial inverter products.

Design of a Container Crane Controller Using the Fuzzy Control Technique (퍼지제어 기법을 이용한 컨테이너 크레인의 제어기 설계)

  • 소명옥;유희한;박재식;남택근;최재준;이병찬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.759-766
    • /
    • 2003
  • The amount of container freight continuously has been increased. and the low efficiency of container crane causes jamming frequently in transportation and cargo handling at port. The conventional control techniques based on a mathematical model are not well suited for dealing with ill-defined and uncertain systems. Recently. Fuzzy control has been successfully applied to a wide variety of practical problems as robots. automatic train operation system. etc. In this paper. a fuzzy controller for container crane is proposed to accomplish a design of improved control system for minimizing the swing motion at destination. In this scheme a mathematical model for the system is obtained in state space form. Finally. to exhibit the tracking performance and robustness of the proposed controller. computer simulations were carried out with various references, parameter variations and disturbances.

Robust Back-Stepping Control with Polynomial-type PD input for Flexible Joint Robot Manipulators

  • Lee, Jae-Young;Park, Jong-Hyeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.927-932
    • /
    • 2007
  • This paper proposes a robust back-stepping control with polynomial-type PD input for flexible joint robot manipulators to overcome parameter uncertainty. In the first step, a fictitious control is designed with polynomial-type PD input for the rigid link dynamic by the H-infinity control method. In second and third steps, the other fictitious control and real control are designed using saturation control and polynomial-type PD input based on the Lyapunov's second method. In each step, the designed robust inputs satisfy the L2-gain, which is equal to or less than gamma in the closed loop system. In contrast with the previous researches, the proposed method proves performance relations with PD gain from the robust gain. The performance robustness of the proposed control is verified through a 2-DOF robot manipulator with joint flexibility.

  • PDF

Performance Improvement for PID Controllers by using Dual-Input Describing Function (DIDF) Method (DIDF를 이용한 PID제어기의 성능향상에 관한 연구)

  • Choe, Yeon-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1741-1747
    • /
    • 2011
  • Though various techniques have been studied as a way of adjusting parameters of PID controllers, no perfect method of determining parameters is available to date. This paper proposes a new method for enhancing performance of PID controllers by using the characteristics of dual-input describing function (DIDF). In other words, if nonlinear elements with two inputs (DIDF) are connected in series to the plant, the critical point (-1+j0) for Nyquist stability theory can be moved to a position arbitrarily selected on the complex plane by determining necessary coefficients of the DIDF appropriately. This makes the application of the existing conventional PID parameter tuning methods a lot easier, and stability and robustness of the system are improved simultaneously due to the DIDF inserted.

Study on the analysis Adaptive Observers to Control SRM Control Meathod (SRM 제어방법들에 대한 적응관측기들의 분석)

  • Shin, Jae-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.160-164
    • /
    • 2007
  • MRAS observer, which is based on adaptive control theory, estimates speed and position by using optimal observer gains on the basis of Lyapunov stability theory. However, in case of MRAS theory, position estimation error is in existence because of non-linearity for inductance variation and limit cycles for position estimation. The adaptive sliding observer based on the variable structure control theory estimates the speed and position for zero of estimation error by using the sliding surface equal to the error between speed and position estimation. The binary observer estimates the rotor speed and rotor flux with alleviation of the high-frequency chattering, and retains the benefits achieved in the conventional sliding observer, such as robustness to parameter and disturbance variations. The speed and position sensorless control of SRM under the load and inductance variation is verified by the experimental results.

  • PDF