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Abstract

A new integral variable structure system without the
reaching phase problems is presented for the prescribed
control of the BLDDSM under load variation and parameter
uncertainties. The control technique can yields the complete
robustness of initially prescribed output dynamics in the
sliding surface against the modeling errors. The comparative
simulation and experiment studies of the BLDDSM position
control are carried out in comparison with two previous
algorithms.

I Introduction

. A direct drive servo motor can provide the very high
torque at low to moderate speeds by directly coupling the
load to the motor shaft without gears, belts, or any form of
the mechanical leverage[13]. Since the load variations and
external disturbances directly influence on a servo system,
there are some unexpected gains and trade-off, besides the
obvious advantages of eliminating the transmission. The
inevitable modeling errors resulted from the linearization
and parameter uncertainties including load variations are the
harmful factors for the control of a brushless direct drive
servo motor(BLDDSM).

As a precise and robust algorithm being different from
the well known PI type controller, the variable structure
system with sliding mode control(SMC) is considered for a
brushless servo. motor(BLSM)[4-6] or a BLDDSM[7-9].
Unfortunately, there exists an the problems of the reaching
phase in the most conventional SMC’s for driving of a
BLDDSM. The reaching phase decrease the robustness of
the algorithm since the system may be sensitive to the
parameter variations and disturbances during reaching
phase[3]. Moreover, it is difficult to predict the whole output
dynamics entirely.

In this paper, a integral variable structure system
without the problems of the reaching phase is suggested for
the prescribed optimal output control of a BLDDSM sub-
jected the load variation. For the design of this surface, the
optimal regulator technique is introduced, which implies the
prescription of the output performance in this work. The
stability of the position control algorithm is investigated
under the modeling errors. The performances of the pro-
posed controller is verified through the simulation and
experiment studies on the position control of a BLDDSM in
comparison with those of the previous two algorithms.

IL. Hardware Sysem Description

The implemented total hardware configuration for the
experiments is shown in Fig. 1, which consists of the
BLDDSM, its current controller using VSI, a resolver and
reslver-to-digital converter, 486 PC with interface card. The
resolver and resolver-to-digital converter is used for detec-
tion of the-angular position and speed of the rotor with 14
bit resolution per rotation and 12 bit A/D conversion,
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Fig. 1 Total implemented hardware configuration

respectively. The VSS control algorithm embedded in the
486 PC generates the g-axis current command for position-
ing the BLDDSM to the reference command. Through D/A
conversion, this current command is given to the current
controller. The current controller of CRPWM VSI using
IGBT switching device with 3.4 [kHz} ramp comparison
regulates the real motor currents to its command. Eventual-
ly, the position of the motor is to be controlled as command-
ed.

III. Variable Structure System with Prescribed Optimal
Qutput Dynamics
A. Modeling of BLDDSM
A vector-controlled linearized BLDDSM can be ex-
pressed as follows[7-9]:

J-8(+D -9(1)+T,_(t.0(t))=%pk, -0 n
J : total moment of inertia
D : coefficient of viscous friction term
p : number of poles
k, : torque constant
9 : angle displacement
6 : angular velocity of rotor
iy, : g-axis current

T,t8() : load variations.

It is assumed that the system parameters J, D, and £, in (1)
are bounded as J € [V, Juuh D € [Dpy Dpuds and ke[t &)
. Let X°¢ {X., X.J X=J.D.andt denotes each estimated
nominal parameter. For a SMC, let us define the state vector
X(t) e % with respect to the desired position command, 9, as

XO=x,0 X0r @
where X,(t) and X (1) € X are expressed as
X(t)y=e()=6,-0() (a)
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Xy() = ey(1) =—0(0). @b)

Finally, the error state equation of a BLDDSM is expressed

as
; 0 1 0 0

X )“[0 —D/J] Xt )J{w} L [BPk,/ZJ] W0 3)
with an initial condition, X,(0)= 6, 0(0) and X,(0)=—-6(0). The
main;objective of the controiler design for (3) is to drive the
BLDDSM to the command position exactly with prescribed
optimal output dynamics even in the presence of the
parameter mismatches. To achieve this design goal, the
reaching phase must be removed because the output during
the reaching phase can not be predetermined by the design-
er.
B. Integral-Augmented Sliding Surface and Its Optimal
Design

The conventional switching function is augmented by
an integral action with a nonzero initial value in this paper
as follows:

sH=X0)+C - X()+Cy- X, (=0) 4)

XUEJ:X,(T,)dt+X8, Xy =—(X,00)+C, - X,(0/C,.  (da)

The surface of (4) is obviously defined from any given
initial condition in phase plane since (4) always clearly
satisfies s(0)=0 for any x° at :=0. This point is not
considered in [13]. Therefore, the controlled system can
slide from the beginning without any reaching phase with
(4). From $(1) =0, the ideal equivalent control of (4) becomes

2¢C DY U
iq3(1)=—3—];"-£~X,+(C,——)~~—~X2+~E]——TL(I.9(t)). 5)

k J ] 3Pk, 3Pk,
and the sliding mode dynamics is ideally described as
X=X X,(O)
X,=-C,- X, -C, Xy X,(0) (6)

or in matrix form
s 0 1
X=A X, A(=[__C0 ~Cl:I [€))

which is the dynamical interpretation of (4) from a given
X(0) to origin. And by using the nominal parameters, it can
be re-expressed as

L 1 0 .
X(r>=[0 _ Douo]xa)—[”kf,z,n]:,sm, X0 @
i(D=K-X (9a)

K =[2C, ' 13Pk’ (C, =D -2J°3PK]].  (9a)
Now, the desired coefficient of (4) can be selected straight-
forwardly using the any pole-assignment to the system (8).
The linear quadratic optimal technique is employed in this
paper to determine the gain matrix K in (9a). The quadratic
performance index / is chosen as

I= r(xTQx i)t (10)
0

where ¢"=0 >0 and r >0 are the weighting matrix for the
state and the scalar for the control, respectively. The
weighting matrix @ can be selected as ¢ =£7c where £ e %'
and the pair (4,E) is observable. Then, the optimal gain
matrix X to minimize the performance index, 7 in (10) is
given by

K, =K, K, }=-1r-[0 3Pk2J-P 689
where P is the solution of the matrix Riccati equation:

SIS ) WS K P P
. (12)

Then, the optimal coefficient of the sliding surface can be

determined as

Co=3pk} K, 12°. C =D +3pk} K, 2° (13)
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Fig. 2 Proposed algorithm

Since (8) is the nominal system of (3), this design of the
sliding surface implies the optimal performance design to
the nominal system.
C. Design of Control Input and Stability Analysis

As the second design stage of the VSS controller, the
following type of the control input for the g-axis current of
the BLDDSM is considered as

i ()=U, ()+AU() (14)
where U, () is called the available equivalent contro! of (4)
instead of (5)as

U, (6) =2C,J°Bpk! - X,+(C,-D°")- 2°13pk} - X,

=K, X (14a)

which is directly determined according to the design of the
sliding surface. Also, the discontinuous control term to
maintain the system on the surface by nullifying the effect
of the uncertainties is expressed as

AU =Y, X))+, - X+, X, + W, + k- s(eX14b)
where x>0 and
v o, 20 if s(t)-X(6)>0
=lg<0 i s-x0<0
o, 2 max{-2C/3p -k IIJY if s()-X,(0>0
Y= !
! {B,Smin{—ZCD/?}p-k,oj/k,'Jo} if s()-X,@)<0
XD =T -DY+2%, - J -k -T)-(C,~D)
pkk,
4(J~5-7-D)+2(F,-I—k,-7)-(C.-D'/7)}

o, 2 max:
.

if s)-X0>0
Wy ={

if s(t)-X,() <0

L
Bos "‘,‘“[ SpKF,

E 2 max{27T,(+,00)/3pk} if s(t)>0

Vo=l cominar,00y3pk) i s<0. O

By this control input with (4), the BLDDSM can be
controlled in the sliding mode so that its output can be
completely insensitive to the system uncertainties and load
disturbances for ¢>0. Now, the existence of the sliding
mode on predetermined sliding surface together with the
stability of the closed loop system will be investigated in
next theorem
Theorem 1: Given system (3), the position control algo-
rithm (15) with (4) satisfies the sufficient condition of the
existence of the sliding mode:

$()-s)<0 (15)
and the asymptotic stability.
Progf. Proof is dropped for brevity.
Due to Theorem 1, the sliding mode can occur on the every
point of s¢)=0. Thus output can be obtained as designed in
the optimal switching surface for all the bounded load
variations and modeling errors by the invariance property of
the sliding mode. Fig. 2 shows the proposed algorithm for
the position control of a BLDDSM.

The simulation and experiment studies are carried out
to show the improved robustness and prescribed output
dynamics of the proposed algorithm in comparison with
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Fig. 3 Output respoases by simulations with and
without load variations

those of the conventional linear and imegral-augmenied
sliding surfaces[13].

1V. Simulation and Experiment Studics

A. Design of Algorithm
Using the parameters . the nominal system
becomes
xo=0 2 lxe-[ .0 Lo as
o -5425 12446.] "

As the first design stage of the suggested position algorithm,
@ and r in (10) are selected as

4 2 '
Q z[,) 1}, and  r=0.01 (17)
which gives rise to the optimal gain, X, as
K,=[161e” 3417 (18)

by (11), and consequently, the optimial coelficient of the
sliding surface becomes
=200, C,=11.8322. (19)

In turn, the sliding surface becomes
Sp=20-X,+11.8322-X,+X,, X, =f X(Ddt+X,. (20)
o

Then, the switching gains of (17b) are sclected within the
range satisfying the inequalities (17¢) as
W, =0.1000, ¥, =0.0020, ¥,=0.0030

W, =0.9930, x=0.0001.

B. Results of Simulation and Experiment and Discus-
sions

The position command is given to 3.14 {rad]. Fig. 3 and
Fig. 4 show the error output responses of the three algo-
rithms with and without load variation by the computer
simulation and experiment, respectively (a) by the conven-
tional VSS with the linear sliding surface, (b) by the
previous IVSS{13], and (c) by the proposed SMC. the two
case outputs in Fig. 3(a) and 4(a) are different from each
other as can be seen because of the sensitivity to the load
variation during the reaching phase, and the steady state
error exists due to the quasi-sliding mode in digital imple-
mentation. In cases of (b), the steady state error is much
reduced due to the integral action, but the overshoot as
undesirable transient performance appears by the side effect
of the integral, because the integral state integrated from
zero must re-converge to zero. However, the outputs of two
responses in Fig. 3(c) and 4(c) are exactly equal. Because of
this, the output behavior can be predictable and prescribed,
and no overshoot and negligible steady state error are
obtained. The suggested algorithm provides the better
features than other two algorithms in view of the overshoot,
steady state error, and reaching phase.

From the results of the simulations and the experi-
ments, the suggested position contro} technique yields better
performances than those of the previous two ones.

(6) by previows VS (e by proposedd SMC

(a) by commensional VS

Fig. 4 Qutput responses by experiment with and
without load variations

V. Conclusions

In this paper, a new integral variable structure system
without the reaching phase problems is presented for the
improved robust position control of the BLDDSM under
load variation. The existence of the sliding mode together
with the asymtotic stability of the algorithm is investigated
under the parameter uncertainty and load variation as the
modeling errors. The simulation and experiment studies
verify the usefulness of the algorithm compared with those
of the previous two algorithms. The proposed algorithm can
provide the improved performances in the respects of the
robustiess, prediction and prescription of the optimal out-
put. .
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