• Title/Summary/Keyword: Parameter of stability

Search Result 1,390, Processing Time 0.035 seconds

Stability and Robust H Control for Time-Delayed Systems with Parameter Uncertainties and Stochastic Disturbances

  • Kim, Ki-Hoon;Park, Myeong-Jin;Kwon, Oh-Min;Lee, Sang-Moon;Cha, Eun-Jong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.200-214
    • /
    • 2016
  • This paper investigates the problem of stability analysis and robust H controller for time-delayed systems with parameter uncertainties and stochastic disturbances. It is assumed parameter uncertainties are norm bounded and mean and variance for disturbances of them are known. Firstly, by constructing a newly augmented Lyapunov-Krasovskii functional, a stability criterion for nominal systems with time-varying delays is derived in terms of linear matrix inequalities (LMIs). Secondly, based on the result of stability analysis, a new controller design method is proposed for the nominal form of the systems. Finally, the proposed method is extended to the problem of robust H controller design for a time-delayed system with parameter uncertainties and stochastic disturbances. To show the validity and effectiveness of the presented criteria, three examples are included.

Robust Optimal Bang-Bang Controller Using Lyapunov Robust Stability Condition (Lyapunov 강인 안정성 조건을 이용한 강인 최적 뱅뱅 제어기)

  • Park Young-Jin;Moon Seok-Jun;Park Youn-Sik;Lim Chae-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.411-418
    • /
    • 2006
  • There are mainly two types of bang-bang controllers for nominal linear time-invariant (LTI) system. Optimal bang-bang controller is designed based on optimal control theory and suboptimal bang-bang controller is obtained by using Lyapunov stability condition. In this paper, the suboptimal bang-bang control method is extended to LTI system involving both control input saturation and structured real parameter uncertainties by using Lyapunov robust stability condition. Two robust optimal bang-bang controllers are derived by minimizing the time derivative of Lyapunov function subjected to the limit of control input. The one is developed based on the classical quadratic stability(QS), and the other is developed based on the affine quadratic stability(AQS). And characteristics of the two controllers are compared. Especially, bounds of parameter uncertainties which theoretically guarantee robust stability of the two controllers are compared quantitatively for 1DOF vibrating system. Moreover, the validity of robust optimal bang-bang controller based on the AQS is shown through numerical simulations for this system.

Design of a Robust Controller Perturbations using Plant Parameter (플랜트 매개변수 섭동을 이용한 강인 제어기 설계)

  • Hwang, Yu,-Sub
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.4 s.304
    • /
    • pp.19-24
    • /
    • 2005
  • In this paper, some algorithms for robust stabilization of linerar time - invariant single - input - multi output(SIMO) systems subject to parameter perturbatations are presented. .The range of structure perturbation was obtained by using the gradient optimization algorithm. These algorithms iteratively enlarge the stability hypersphere in plant parameter space and can be used to design a robust controller to stabilize a plant subject to givien range of parameter ecxursions.

Immediate Effects of Abdominal Pressure Belt on Limited of Stability and Gait Parameter in Patients after Chronic Stroke: one-group pretest-posttest design (복부압박벨트가 만성 뇌졸중 환자의 균형 및 보행에 즉각적으로 미치는 융복합적 영향)

  • Park, Shin-Jun;Cho, Kyun-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.4
    • /
    • pp.63-69
    • /
    • 2020
  • This study was conducted to investigate the immediate effects of abdominal pressure blet on limited of stability and gait parameter in patients after stroke. Thirty stroke patients were recruited to measured pre and post wearing the abdominal pressure belt. The assessment measured limited of stability and spatiotemporal gait parameter. This study result were significantly increase in paretic side area, non-paretic side area, forward side area, backward side area (p<.05) and cadence, gait velocity, stride length (p<.05). This study found that abdominal pressure belt had an immediate effect on improving balance and gait function in stroke patients. Future studies require studies of efficient abdominal pressure levels and intervention periods to improve the balance and walking function of stroke patient.

Stability Formula for Rakuna-IV Armoring Rubble-Mound Breakwater (사석방파제 위에 피복한 Rakuna-IV의 안정공식)

  • Suh, Kyung-Duck;Lee, Tae Hoon;Matsushita, Hiroshi;Nam, Hong Ki
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.4
    • /
    • pp.181-190
    • /
    • 2013
  • In this study, a total of 51 cases of hydraulic model tests has been conducted for various wave conditions and slope angles of breakwater to develop a stability formula for Rakuna-IV armoring a rubble-mound breakwater. The stability number of the formula is expressed as a function of relative damage, number of waves, structural slope, and surf similarity parameter. The stability formula is derived separately for plunging and surging waves, the greater of which is used. The transitional surf similarity parameter from plunging waves to surging waves is also presented. Lastly, to explain the stability of Rakuna-IV to the engineers who are familiar with the stability coefficient in the Hudson formula, the required weight of Rakuna-IV is calculated for varying significant wave height for typical plunging and surging wave conditions, which is then compared with those of the Hudson formula using several different stability coefficients.

An Extended Model Evaluation Method under Uncertainty in Hydrologic Modeling

  • Lee, Giha;Youn, Sangkuk;Kim, Yeonsu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.5
    • /
    • pp.13-25
    • /
    • 2015
  • This paper proposes an extended model evaluation method that considers not only the model performance but also the model structure and parameter uncertainties in hydrologic modeling. A simple reservoir model (SFM) and distributed kinematic wave models (KWMSS1 and KWMSS2 using topography from 250-m, 500-m, and 1-km digital elevation models) were developed and assessed by three evaluative criteria for model performance, model structural stability, and parameter identifiability. All the models provided acceptable performance in terms of a global response, but the simpler SFM and KWMSS1 could not accurately represent the local behaviors of hydrographs. Moreover, SFM and KWMSS1 were structurally unstable; their performance was sensitive to the applied objective functions. On the other hand, the most sophisticated model, KWMSS2, performed well, satisfying both global and local behaviors. KMSS2 also showed good structural stability, reproducing hydrographs regardless of the applied objective functions; however, superior parameter identifiability was not guaranteed. A number of parameter sets could result in indistinguishable hydrographs. This result indicates that while making hydrologic models complex increases its performance accuracy and reduces its structural uncertainty, the model is likely to suffer from parameter uncertainty.

Fault Diagnosis for Parameter Change Fault

  • Suzuki, Keita;Fujii, Takao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2183-2187
    • /
    • 2005
  • In this paper we propose a new fault detection and isolation (FDI) method for those faults of parameter change type. First, we design a residual generator based on the ${\delta}$-operator model of the plant by using the stable pseudo inverse system. Second, the parameter change is estimated by using the property of the block Hankel operator. Third, reliability with respect to stability is quantified. Fourth, the limitations for the meaningful diagnosis in our method are given. The numerical examples demonstrate the effectiveness of the proposed method.

  • PDF

An Analysis on Effects of Phase Compensation on Power System Stability in the PSS Parameter Tuning (PSS Tuning시 위상보상이 계통안정도에 미치는 영향 분석)

  • Kim, Tae-Kyun;Shin, Jeong-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1147-1149
    • /
    • 1998
  • This paper presents the result of an analysis on effects of phase compensation on power system stability in the PSS parameter tuning. Synchronizing and damping coefficients are induced from lineal model for generator with PSS. Synchronizing and damping coefficients corresponding to time constants of phase compensation control block are calculated on a single machine, infinite bus test system. The Parameter tuning concepts, basic function, structural elements and performance criteria of PSS are introduced.

  • PDF

A CONDITION OF UNIQUENESS AND STABILITY IN A BURSTING MODEL

  • Lee, Eui-Woo
    • The Pure and Applied Mathematics
    • /
    • v.9 no.1
    • /
    • pp.19-30
    • /
    • 2002
  • We consider one class of bursting oscillation models, that is square-wave burster. One of the interesting features of these models is that periodic bursting solution need not to be unique or stable for arbitrarily small values of a singular perturbation parameter $\epsilon$. Recent results show that the bursting solution is uniquely determined and stable for most of the ranges of the small parameter $\epsilon$. In this paper, we present a condition of uniqueness and stability of periodic bursting solutions for all sufficiently small values of $\epsilon$ > 0.

  • PDF

A study on the Lateral Stability of a Canard Airplane Using In-Flight Real-Time Parameter Estimation Techniques (비행중 실시간 파라미터 추정기법을 이용한 커나드 비행기의 가로안정성에 관한 연구)

  • Park, Wook-Je;Noh, Yang-Soo;Choi, Jin-Won;Moon, Jung-Ho;Hwang, Myoung-Shin;Seong, Kee-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.57-64
    • /
    • 2004
  • The Purpose of this paper is to obtain the lateral-directional controllability and stability derivatives of the Velocity-173 from the flight test data and to simulate motion of the aircraft by using In-flight Real-Time Parameter Estimation Techniques. In this paper, the results of the In-Flight Real-Time parameter Estimation Techniques are compared with the results of the Advanced Aircraft Analysis. As a result, Estimation by using In-Flight Real-Time Parameter Estimation Techniques can be done rapidly and their results are reliable.