• 제목/요약/키워드: Parameter design

검색결과 4,958건 처리시간 0.03초

시멘트계 고화재에 의해 혼합처리된 지반의 설계정수에 관한 연구 (A Study on the Design-parameter of Mixed Ground by Using Cement-type Stabilizer)

  • 천병식;임해식;전진규
    • 한국지반공학회논문집
    • /
    • 제16권2호
    • /
    • pp.79-89
    • /
    • 2000
  • The application of stabilization method has increased because of short construction periods, no environmental problems with dumped and replaced soil, assurance of required strength and economical effect with mid to small size construction. The unconfined and triaxial(UU-condition) compression tests were executed with each mixing sample for the study of the improvement effects and the effect of design-parameters by the stabilization methods. Three typical stabilizers, which are representative in Korea, were applied in this study, and three common soils(very soft clay, general weathered soil, common clay), which are common in Korea, were used in this study. In this study, the effect of engineering factors(soils, stabilizers and water contents, etc.) which are important parameters for the improvement effects of mixed ground by stabilizers, was analyzed. As results, the tendencies of design-parameters(unconfined compression strength, deformation modulus and strength parameter) are presented and the criteria of the application of stabilization methods are suggested.

  • PDF

설계 및 공정 변수에 따른 600 V급 IGBT의 전기적 특성 분석 (Analysis of The Electrical Characteristics of Power IGBT According to Design and Process Parameter)

  • 강이구
    • 한국전기전자재료학회논문지
    • /
    • 제29권5호
    • /
    • pp.263-267
    • /
    • 2016
  • In this paper, we analyzed the electrical characteristics of NPT planar and trench gate IGBT after designing these devices according to design and process parameter. To begin with, we have designed NPT planar gate IGBT and carried out simulation with T-CAD. Therefore, we extracted design and process parameter and obtained optimal electrical characteristics. The breakdown voltage was 724 V and The on state voltage drop was 1.746 V. The next was carried out optimal design of trench gate power IGBT. We did this research by same drift thickness and resistivity of planar gate power IGBT. As a result of experiment, we obtain 720 V breakdown voltage, 1.32 V on state voltage drop and 4.077 V threshold voltage. These results were improved performance and fabrication of trench gate power IGBT and planar gate Power IGBT.

다구찌법을 이용한 소음저감용 ER 패널의 파라미터 설계 (Parameter Design of an ER Panel for Noise Reduction using Taguchi Method)

  • 윤영민;김재환;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.638-642
    • /
    • 2003
  • This paper presents a parameter design of an Electrorheological(ER) panel for noise reduction using Taguchi method. Taguchi method is a robust design method that determines control parameters in the presence of noise effect. Host structure thickness, spacer thickness, base oil viscosity and the weight ratio of ER particles are chosen for the control factors. A test setup in an SAE J1400 facility is used to analyze the sound transmission loss. The sensitivity of each factor with signal-to-noise(S/N) ratio and analysis of variance are investigated. The analysis results show that the weight ratio of ER particle and base oil viscosity of the ER fluid mostly affects the noise reduction in the presence of electric field. Based on the Taguchi method, an optimal configuration was designed and comparison is made with experimental result fer the verification.

  • PDF

베인형 진공펌프의 내부유동과 구조 강성에 관한 해석적 연구 (Analytical Study on Inner Flow and Structural Stiffness in Vane Type of Vacuum Pump)

  • 손태관
    • 한국자동차공학회논문집
    • /
    • 제25권2호
    • /
    • pp.201-206
    • /
    • 2017
  • In the study, the inner flow characteristics were analyzed by modifying the inner design parameter of the vane-type vacuum pump. The effect of pressure generated by the inner flow of pump on the rotor and vane was analyzed. The design parameter was analyzed using the angle variation of tilting and rotation of the vane. MRF was used for the analysis conducted using a virtual condition where the rotor and vane are rotated. The pressure gained from the load of the rotor and vane in the flow analysis is used for the structure analysis. Based on the results, the effect of variable vane design was revealed in structural strength. The effect of centrifugal and friction force generated during pump operation on structural strength was also analyzed.

DMT시스템에서 ADSL 칩 설계를 위한 동기화 파라미터에 관한 연구 (A study on the synchronization parameter to design ADSL chip in DMT systems)

  • 조병록;박솔;김영민
    • 한국정보통신학회논문지
    • /
    • 제3권3호
    • /
    • pp.687-694
    • /
    • 1999
  • 본 논문에서는 ADSL용 칩 설계를 위한 동기화 파라미터 값을 도출하기 위하여 컴퓨터 모의수행으로 STR과 프레임동기의 성능을 분석한다. ADSL에 적합한 PLL루프를 분석하고 설계를 하며, 이러한 결과를 통하여 ADSL칩 설계를 위한 STR의 최적 파라미터 값을 얻는다. 또한 여러 가지 알고리즘으로 프레임동기를 수행할 때, 컴퓨터 모의수행으로 FER(Frame Error Rate)의 성능을 분석했고, 프레임 offset의 효과를 분석했다.

  • PDF

NURBS Surface Global Interpolation에 대한 한 방법: II (A New Method of the Global Interpolation in NURBS Surface: II)

  • 정형배
    • 한국CDE학회논문집
    • /
    • 제3권4호
    • /
    • pp.243-250
    • /
    • 1998
  • In parametric surface interpolation, the choice of the parameter values to the set of scattered points makes a great deal of difference in the resulting surface. A new method is developed and tested for the parametrization in NURBS surface global interpolation. This method uses the parameter value at the maximal value of relevant rational basis function, to assign the parameter values to the arbitrary set of design data. This method gives us several important advantages in geometric modeling, the freedom of the selection of knot values, the feasible transformation of the data set to the matrix, the possibility of affinite transformation between the design data and generated surface, etc.

  • PDF

가변추출간격을 이용한 c 관리도의 최적설계 (Optimal Design of c Control Chart using Variable Sampling Interval)

  • 박주영
    • 대한안전경영과학회지
    • /
    • 제9권2호
    • /
    • pp.215-233
    • /
    • 2007
  • Even though the ad hoc Shewhart methods remain controversial due to various mathematical flaws, there is little disagreement among researchers and practitioners when a set of process data has a skewness distribution. In the context and language of process control, the error related to the process data shows that time to signal increases when a control parameter shifts to a skewness direction. In real-world industrial settings, however, quality practitioners often need to consider a skewness distribution. To address this situation, we developed an enhanced design method to utilize advantages of the traditional attribute control chart and to overcome its associated shortcomings. The proposed design method minimizes bias, i.e., an average time to signal for the shift of process from the target value (ATS) curve, as well as it applies a variable sampling interval (VSI) method to an attribute control chart for detecting a process shift efficiently. The results of the factorial experiment obtained by various parameter circumstances show that the VSI c control chart using nearly unbiased ATS design provides the smallest decreasing rate in ATS among other charts for all experimental cases.

FATIGUE DAMAGE PARAMETER OF SPOT WELDED JOINTS UNDER PROPORTIONAL LOADING

  • KANG H. T.
    • International Journal of Automotive Technology
    • /
    • 제6권3호
    • /
    • pp.285-291
    • /
    • 2005
  • In this paper, the author proposes a fatigue damage parameter of spot welded joints under proportional loading. The proposed fatigue damage parameter is developed based on von Mises' equivalent stress and local structural stress at the edge of spot weld nugget. The structural stress at the edges of the weld nugget in each sheet is calculated using the forces and moments that are determined by finite element analysis. A structural equivalent stress is then calculated by von Mises' equivalent stress equation. The structural equivalent stresses are correlated to experimental fatigue life of the spot welded joints. The proposed parameter is evaluated with fatigue test data of spot welds subjected to multi axial and tensile-shear loads. Sheppard's parameter and Rupp and co-workers' parameter are also evaluated with the same test data to compare with the author's parameter. This proposed parameter presents a better correlation with experimental fatigue data than those of Sheppard's and Rupp and co-workers' parameter. The proposed parameter should be very effective for durability calculations during the early design phase since coarsely meshed finite element models can be employed.

유동시스템의 형상 최적화에 성장-변형률법의 적용 (The Application of the Growth-Strain Method to the Shape Optimization of the Flow System)

  • 맹주성;한석영;김종필
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.533-538
    • /
    • 2001
  • In general, shape optimization design of the flow system has done to obtain the effects, which are required in the engineering fields. Most of these designs are accomplished by empirical or numerical analysis. But, in empirical analysis case, it is difficult to obtain an optimal shape in the feasible design region. And, in numerical method case, it usually needs many design parameters, because of the required object-function. In this paper, we present a newly numerical analysis, the growth-strain method having only one design parameter. That optimizes a shape by distributing a design parameter such as dissipation energy to be uniformed in the flow system. Also, we apply this shape design process to the three-flow systems, and then we identify that the resulting shape approaches the known optimal shape in the numerical values. Consequently, we confirm that the proposed method is very efficient and practical in the shape optimization of the flow system.

  • PDF

반응표면분석법을 이용한 모수 및 공차설계 통합모형 (Response Surface Approach to Integrated Optimization Modeling for Parameter and Tolerance Design)

  • Young Jin Kim
    • 품질경영학회지
    • /
    • 제30권4호
    • /
    • pp.58-67
    • /
    • 2002
  • Since the inception of off-line quality control, it has drawn a particular attention from research community and it has been implemented in a wide variety of industries mainly due to its extensive applicability to numerous real situations. Emphasizing design issues rather than control issues related to manufacturing processes, off-line quality control has been recognized as a cost-effective approach to quality improvement. It mainly consists of three design stages: system design, parameter design, and tolerance design which are implemented in a sequential manner. Utilizing experimental designs and optimization techniques, off-line quality control is aimed at achieving product performance insensitive to external noises by reducing process variability. In spite of its conceptual soundness and practical significance, however, off-line quality control has also been criticized to a great extent due to its heuristic nature of investigation. In addition, it has also been pointed out that the process optimization procedures are inefficient. To enhance the current practice of off-line quality control, this study proposes an integrated optimization model by utilizing a well-established statistical tool, so called response surface methodology (RSM), and a tolerance - cost relationship.