• Title/Summary/Keyword: Parameter Updating

Search Result 133, Processing Time 0.022 seconds

AN ADAPTIVE PRIMAL-DUAL FULL-NEWTON STEP INFEASIBLE INTERIOR-POINT ALGORITHM FOR LINEAR OPTIMIZATION

  • Asadi, Soodabeh;Mansouri, Hossein;Zangiabadi, Maryam
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1831-1844
    • /
    • 2016
  • In this paper, we improve the full-Newton step infeasible interior-point algorithm proposed by Mansouri et al. [6]. The algorithm takes only one full-Newton step in a major iteration. To perform this step, the algorithm adopts the largest logical value for the barrier update parameter ${\theta}$. This value is adapted with the value of proximity function ${\delta}$ related to (x, y, s) in current iteration of the algorithm. We derive a suitable interval to change the parameter ${\theta}$ from iteration to iteration. This leads to more flexibilities in the algorithm, compared to the situation that ${\theta}$ takes a default fixed value.

Prediction of Stand Structure Dynamics for Unthinned Slash Pine Plantations

  • Lee, Young-Jin;Cho, Hyun-Je;Hong, Sung-Cheon
    • The Korean Journal of Ecology
    • /
    • v.23 no.6
    • /
    • pp.435-438
    • /
    • 2000
  • Diameter distributions describe forest stand structure information. Prediction equations for percentiles of diameter distribution and parameter recovery procedures for the Weibull distribution function based on four percentile equations were applied to develop prediction system of even-aged slash pine stand structure development in terms of the number of stems per diameter class changes. Four percentiles of the cumulative diameter distribution were predicted as a function of stand characteristics. The predicted diameter distributions were tested against the observed diameter distributions using the Kolmogorov-Smirnov two sample test at the ${\alpha}$=0.05 level. Statistically, no significant differences were detected based on the data from 236 evaluation data sets. This stand level diameter distribution prediction system will be useful in slash pine stand structure modeling and in updating forest inventories for the long-term forest management planning.

  • PDF

Nonlinear identification of Bouc-Wen hysteretic parameters using improved experience-based learning algorithm

  • Luo, Weili;Zheng, Tongyi;Tong, Huawei;Zhou, Yun;Lu, Zhongrong
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.101-114
    • /
    • 2020
  • In this paper, an improved experience-based learning algorithm (EBL), termed as IEBL, is proposed to solve the nonlinear hysteretic parameter identification problem with Bouc-Wen model. A quasi-opposition-based learning mechanism and new updating equations are introduced to improve both the exploration and exploitation abilities of the algorithm. Numerical studies on a single-degree-of-freedom system without/with viscous damping are conducted to investigate the efficiency and robustness of the proposed algorithm. A laboratory test of seven lead-filled steel tube dampers is presented and their hysteretic parameters are also successfully identified with normalized mean square error values less than 2.97%. Both numerical and laboratory results confirm that, in comparison with EBL, CMFOA, SSA, and Jaya, the IEBL is superior in nonlinear hysteretic parameter identification in terms of convergence and accuracy even under measurement noise.

Euler Parameters Method for Large Deformation Analysis of Marine Slender Structures (오일러 매개변수를 이용한 해양 세장체 대변위 거동 해석)

  • Hong, Sup
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.163-167
    • /
    • 2003
  • A novel method for 3-dimensional dynamic analysis of marine slender structure gas been developed by using Euler parameters. The Euler parameter rotation, which is being widely used in aerospace vehicle dynamics and multi-body dynamics, has been applied to elastic structure analysis. Large deformation of flexible slender structures is described by means of Euler parameters. Euler parameter method is implemented effectively in incremental-iterative algorithm for 3D dynamic analysis. The normalization constraint of Euler parameters is efficiently satisfied by means of a sequential updating method.

  • PDF

Adaptive Parameter Estimator Design for Takagi-Sugeno Fuzzy Models

  • Park, Chang-Woo;Lee, Chang-Hoon;Park, Mignon;Kim, Seungho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.40.5-40
    • /
    • 2001
  • In this paper, a new on-line parameter estimation methodology for the general continuous time Takagi-Sugeno(T-S) fuzzy model whose parameters are poorly known or uncertain is presented. An estimator with an appropriate adaptive law for updating the parameters is designed and analyzed based on the Lyapunov theory. The adaptive law is designed so that the estimation model follows the plant parameterized model. By the proposed estimator, the parameters of the T-S fuzzy model can be estimated by observing the behavior of the system and it can be a basis for the indirect adaptive fuzzy control.

  • PDF

Relationship between Conformational Preferences and Torsional Parameters in Molecular Mechanics (MM3) Calculations

  • 조수경;박규순
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.143-149
    • /
    • 1997
  • We have investigated a relationship between conformational preferences of various substituents in monosubstituted cyclohexanes and pertinent torsional parameter values in molecular mechanics calculations. We have manipulated torsional parameters to supply a certain energy difference between gauche and anti conformers, and applied those parameters to monosubstituted cyclohexanes. After investigating 6 different substituents, namely Me, SiH3, F, Cl, Br, and I, MM3 calculations show that (1) the MM3 calculated A values with the current torsional parameters reproduce the available experimental values well, (2) the conformational energy difference between axial and equatorial conformations (the A value) correlates perfectly with the gauche/anti energy differences of the corresponding butane-like fragment (correlation coefficient=l.000), and (3) the A values are essentially twice as the gauche/anti energy differences (slopes=1.86-2.00). On the basis of our analysis, the A values as well as the gauche/anti energy differences are easily calibrated by an adjustment of the relevant torsional parameter. Thus, our technique for tuning the torsional parameters may be of great use in updating molecular mechanics results about conformational preferences whenever a further refinement is necessary.

A New Unified System of Acoustic Echo and Noise Suppression Incorporating a Novel Noise Power Estimation (새로운 잡음전력 추정 기법을 적용한 음향학적 반향 및 배경잡음 제거 통합시스템)

  • Park, Yun-Sik;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.7
    • /
    • pp.680-685
    • /
    • 2009
  • In this paper, we propose a efficient noise power estimation technique for an integrated acoustic echo and noise suppression system in a frequency domain. The proposed method uses speech absence probability (SAP) derived from the microphone input signal as the smoothing parameter updating noise power to reduce the noise power estimation error resulted from the distortions in the unified structure where the noise suppression (NS) operation is placed after the acoustic echo suppression (AES) algorithm. Therefore, in the proposed approach, the smoothing parameter based on SAP derived from the input signal instead of echo-suppressed signal should stop updating noise power estimates during the distorted noise spectrum periods. The performance of the proposed algorithm is evaluated by the objective test under various environments and yields better results compared with the conventional scheme.

Realistic Estimation Method of Compressive Strength in Concrete Structure (콘크리트 구조물의 합리적인 압축강도 추정기법 연구)

  • Oh, Byung-Hwan;Yang, In-Hwan
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.241-249
    • /
    • 1999
  • To estimate the compressive strength of concrete more realistically, relative large number of data are necessary. However, it is very common in practice that only limited data are available. The purpose of the present paper is therefore to propose a realistic method to estimate the compressive strength of concrete with limited data in actual site. The Bayesian method of statistical analysis has been applied to the problem of the estimation of compressive strength of concrete. The mean compressive strength is considered as the random parameter and a prior distribution is selected to enable updating of the Bayesian distribution of compressive strength of concrete reflecting both existing data and sampling observations. The updating of the Bayesian distribution with increasing data is illustrated in numerical application. It is shown that by combining prior estimation with information from site observation, more precise estimation is possible with relatively small sampling. It is also seen that the contribution of the prior in determining the posterior distribution depends on its sharpness or flatness in relation to the sharpness or flatness of the likelihood function. The present paper allows more realistic determination of concrete strength in site with limited data.

Vibrational Characteristics of the Deteriorated Railway Plate Girder Bridge by Full-scale Experimental Modal Analysis (Full-scale 실험 모드해석을 이용한 노후화된 철도판형교의 진동특성)

  • Kim, Joo-Woo;Jung, Hie-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.119-128
    • /
    • 2012
  • In this study, experimental vibration tests are performed on a real full-scale railway steel plate girder bridge, which resides in open-space environments. Using experimental modal analysis techniques, the modal parameters of the railway steel plate girder bridge yielded by the modal testing of the impact hammer are compared and investigated with the natural frequencies and mode shapes obtained by finite element analysis. This work focuses on the application of model updating techniques to measured experimental data and output-only data from an analytical vibration study that takes into account various geometric and material properties of the bridge members. A finite element model of the railway bridge structure is used to verify the modal experimental results. It is subsequently updated using the corresponding modal identification technique. The basic database is provided to evaluate damage, which can be determined based on the changes in the element properties, resulting from the process of updating the finite element model benchmark and experimental data.

Vibration analysis and FE model updating of lightweight steel floors in full-scale prefabricated building

  • Petrovic-Kotur, Smiljana P.;Pavic, Aleksandar P.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.277-300
    • /
    • 2016
  • Cold-formed steel (CFS) sections are becoming an increasingly popular solution for constructing floors in residential, healthcare and education buildings. Their reduced weight, however, makes them prone to excessive vibrations, increasing the need for accurate prediction of CFS floor modal properties. By combining experimental modal analysis of a full-scale CFS framed building and its floors and their numerical finite element (FE) modelling this paper demonstrates that the existing methods (based on the best engineering judgement) for predicting CFS floor modal properties are unreliable. They can yield over 40% difference between the predicted and measured natural frequencies for important modes of vibration. This is because the methods were adopted from other floor types (e.g., timber or standard steel-concrete composite floors) and do not take into account specific features of CFS floors. Using the adjusted and then updated FE model, featuring semi-rigid connections led to markedly improved results. The first four measured and calculated CFS floor natural frequencies matched exactly and all relevant modal assurance criterion (MAC) values were above 90%. The introduction of flexible supports and more realistic modelling of the floor boundary conditions, as well as non-structural $fa{\c{c}}ade$ walls, proved to be crucial in the development of the new more successful modelling strategy. The process used to develop 10 identified and experimentally verified FE modelling parameters is based on published information and parameter adjustment resulting from FE model updating. This can be utilised for future design of similar lightweight steel floors in prefabricated buildings when checking their vibration serviceability, likely to be their governing design criterion.