DOI QR코드

DOI QR Code

AN ADAPTIVE PRIMAL-DUAL FULL-NEWTON STEP INFEASIBLE INTERIOR-POINT ALGORITHM FOR LINEAR OPTIMIZATION

  • Asadi, Soodabeh (Department of Applied Mathematics Faculty of Mathematical Sciences Shahrekord University) ;
  • Mansouri, Hossein (Department of Applied Mathematics Faculty of Mathematical Sciences Shahrekord University) ;
  • Zangiabadi, Maryam (Department of Applied Mathematics Faculty of Mathematical Sciences Shahrekord University)
  • Received : 2015.12.10
  • Published : 2016.11.30

Abstract

In this paper, we improve the full-Newton step infeasible interior-point algorithm proposed by Mansouri et al. [6]. The algorithm takes only one full-Newton step in a major iteration. To perform this step, the algorithm adopts the largest logical value for the barrier update parameter ${\theta}$. This value is adapted with the value of proximity function ${\delta}$ related to (x, y, s) in current iteration of the algorithm. We derive a suitable interval to change the parameter ${\theta}$ from iteration to iteration. This leads to more flexibilities in the algorithm, compared to the situation that ${\theta}$ takes a default fixed value.

Keywords

References

  1. Zs. Darvay, I.-M. Papp, and P.-R. Takacs, An infeasible full-Newton step algorithm for linear optimization with one centering step in major iteration, Studia Univ. Babes Bolyai Inform. 59 (2014), no. 1 28-45.
  2. G. Gu, M. Zangiabadi, and C. Roos, Full Nesterov-Todd step infeasible interior-point methods for symmetric optimization, European J. Oper. Res. 214 (2011), no. 3, 473-484. https://doi.org/10.1016/j.ejor.2011.02.022
  3. N. K. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984), no. 4, 373-395. https://doi.org/10.1007/BF02579150
  4. H. Mansouri and C. Roos, A simplified O(nL) infeasible interior-point algorithm for linear optimization using full Newton steps, Optim. Methods Softw. 22 (2007), no. 3, 519-530. https://doi.org/10.1080/10556780600816692
  5. H. Mansouri and M. Zangiabadi, An adaptive infeasible interior-point algorithm with full-Newton step for linear optimization, Optimization 62 (2013), no. 2, 285-297. https://doi.org/10.1080/02331934.2011.611881
  6. H. Mansouri, M. Zangiabadi, and M. Arzani, A modified infeasible-interior-point algorithm for linear optimization problems, J. Optim. Theory Appl. 166 (2015), no. 2, 605-618. https://doi.org/10.1007/s10957-015-0719-7
  7. H. Mansouri, M. Zangiabadi, and M. Pirhaji, A full-Newton step O(n) infeasible interior-point algorithm for linear complementarity problems, Nonlinear Anal. Real World Appl. 12 (2011), no. 1, 545-561. https://doi.org/10.1016/j.nonrwa.2010.06.039
  8. C. Roos, A full-Newton step O(n) infeasible interior-point algorithm for linear optimization, SIAM J. Optim. 16 (2006), no. 4, 1110-1136. https://doi.org/10.1137/050623917
  9. C. Roos, An improved and simplified full-Newton step O(n) infeasible interior-point method for linear optimization, SIAM J. Optim. 25 (2015), no. 1, 102-114. https://doi.org/10.1137/140975462
  10. Gy. Sonnevend, An Analytic Center for Polyhedrons and New Classes of Global Algorithms for Linear (Smooth, Convex) Programming, Lecture Notes in Control and Information Sciences, 84, pp. 866-876, Springer, Berlin, 1985.
  11. G. Q. Wang and Y. Q. Bai, A new full Nesterov-Todd step primal-dual path-following interior-point algorithm for symmetric optimization, J. Optim. Theory Appl. 154 (2012), no. 3, 966-985. https://doi.org/10.1007/s10957-012-0013-x
  12. G. Q. Wang, Y. Q. Bai, X. Y. Gao and D. Z. Wang, Improved complexity analysis of full Nesterov-Todd step interior-point methods for semidefinite optimization, J. Optim. Theory Appl. 165 (2014), no. 1, 242-262. https://doi.org/10.1007/s10957-014-0619-2
  13. G. Q. Wang and G. Lesaja, Full Nesterov-Todd step feasible interior-point method for the Cartesian $P_*({\kappa})$-SCLCP, Optim. Methods Softw. 28 (2013), no. 3, 600-618. https://doi.org/10.1080/10556788.2013.781600
  14. M. Zangiabadi, S. Asadi, and H. Mansouri, Modified polynomial-time full-NT-step infeasible interior-point algorithm for symmetric optimization, Int. J. Oper. Res., in press.
  15. L. Zhang and Y. Xu, A full-Newton step interior-point algorithm based on modi ed Newton direction, Oper. Res. Lett. 39 (2011), no. 5, 318-322. https://doi.org/10.1016/j.orl.2011.06.006