• Title/Summary/Keyword: Parameter Extraction

Search Result 492, Processing Time 0.038 seconds

A novel approach to the classification of ultrasonic NDE signals using the Expectation Maximization(EM) and Least Mean Square(LMS) algorithms (Expectation Maximization (EM)과 Least Mean Square(LMS) algorithm을 이용하여 초음파 비파괴검사 신호의 분류를 하기 위한 새로운 접근법)

  • Daewon Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.1
    • /
    • pp.15-26
    • /
    • 2003
  • Ultrasonic inspection methods are widely used for detecting flaws in materials. The signal analysis step plays a crucial part in the data interpretation process. A number of signal processing methods have been proposed to classify ultrasonic flaw signals. One of the more popular methods involves the extraction of an appropriate set of features followed by the use of a neural network for the classification of the signals in the feature space. This paper describes an alternative approach which uses the least mean square (LMS) method and expectation maximization (EM) algorithm with the model based deconvolution which is employed for classifying nondestructive evaluation (NDE) signals from steam generator tubes in a nuclear power plant. The signals due to cracks and deposits are not significantly different. These signals must be discriminated to prevent from happening a huge disaster such as contamination of water or explosion. A model based deconvolution has been described to facilitate comparison of classification results. The method uses the space alternating generalized expectation maximization (SAGE) algorithm In conjunction with the Newton-Raphson method which uses the Hessian parameter resulting in fast convergence to estimate the time of flight and the distance between the tube wall and the ultrasonic sensor Results using these schemes for the classification of ultrasonic signals from cracks and deposits within steam generator tubes are presented and showed a reasonable performances.

  • PDF

Document classification using a deep neural network in text mining (텍스트 마이닝에서 심층 신경망을 이용한 문서 분류)

  • Lee, Bo-Hui;Lee, Su-Jin;Choi, Yong-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.5
    • /
    • pp.615-625
    • /
    • 2020
  • The document-term frequency matrix is a term extracted from documents in which the group information exists in text mining. In this study, we generated the document-term frequency matrix for document classification according to research field. We applied the traditional term weighting function term frequency-inverse document frequency (TF-IDF) to the generated document-term frequency matrix. In addition, we applied term frequency-inverse gravity moment (TF-IGM). We also generated a document-keyword weighted matrix by extracting keywords to improve the document classification accuracy. Based on the keywords matrix extracted, we classify documents using a deep neural network. In order to find the optimal model in the deep neural network, the accuracy of document classification was verified by changing the number of hidden layers and hidden nodes. Consequently, the model with eight hidden layers showed the highest accuracy and all TF-IGM document classification accuracy (according to parameter changes) were higher than TF-IDF. In addition, the deep neural network was confirmed to have better accuracy than the support vector machine. Therefore, we propose a method to apply TF-IGM and a deep neural network in the document classification.

Classification of Ultrasonic NDE Signals Using the Expectation Maximization (EM) and Least Mean Square (LMS) Algorithms (최대 추정 기법과 최소 평균 자승 알고리즘을 이용한 초음파 비파괴검사 신호 분류법)

  • Kim, Dae-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.1
    • /
    • pp.27-35
    • /
    • 2005
  • Ultrasonic inspection methods are widely used for detecting flaws in materials. The signal analysis step plays a crucial part in the data interpretation process. A number of signal processing methods have been proposed to classify ultrasonic flaw signals. One of the more popular methods involves the extraction of an appropriate set of features followed by the use of a neural network for the classification of the signals in the feature spare. This paper describes an alternative approach which uses the least mean square (LMS) method and exportation maximization (EM) algorithm with the model based deconvolution which is employed for classifying nondestructive evaluation (NDE) signals from steam generator tubes in a nuclear power plant. The signals due to cracks and deposits are not significantly different. These signals must be discriminated to prevent from happening a huge disaster such as contamination of water or explosion. A model based deconvolution has been described to facilitate comparison of classification results. The method uses the space alternating generalized expectation maximiBation (SAGE) algorithm ill conjunction with the Newton-Raphson method which uses the Hessian parameter resulting in fast convergence to estimate the time of flight and the distance between the tube wall and the ultrasonic sensor. Results using these schemes for the classification of ultrasonic signals from cracks and deposits within steam generator tubes are presented and showed a reasonable performances.

Ergosterol Contents and Enzymatic Characteristics of Lentinula edodes During Culture and Fruiting Periods (표고 균주의 배양 기간과 자실체 발생 기간에 따른 에르고스테롤 변화와 효소적 특성)

  • Kim Myungkil;Yoon Kabhee;Bak Wonchull;Park Hyun;Choi Joonweon;Lee Jaewon;Lee Bonghun
    • Journal of Korea Foresty Energy
    • /
    • v.23 no.2
    • /
    • pp.21-28
    • /
    • 2004
  • Three different strains of Lentinula edodes, Sanlim 5-Ho, Sanlim 6-Ho and Nongki 3-Ho, were cultured in the sawdust media of Mongolian oak(Quercu mongolica Fisch) for 90 days under dark and light conditions(each 30 days) and fruiting period(30 days). Weight loss of sawdust media was determined after fungal cultures and the contents of ergosterol in fungal mycelia were quantified by HPLC analysis followed by solvent extraction. Compared with the two other fungal strains$(8\%)$, weight loss of Sanlim 5-Ho was slightly lowered to $7\%$. The level of ergosterol content, a parameter for fungal growth, was continuously enhanced in Sanlim 5-Ho for dark and light incubation periods. However, Sanlim 6-Ho and Nongki 3-Ho recorded the maximized fungal growth under light condition. In fruiting periods the ergosterol contents were lowered in the three strains. Intra- and extracellular enzymes during cultural and fruiting periods were also characterized. The activity of Mn-peroxidase and laccase, which are characteristics enzymes for white rot fungi as lignin degrading enzymes, were determined as a high level overall the periods. As cellulose degrading indicators, the activity of CMCase, avicelase, xylanase and glucanase were detectable in initial incubation period.

  • PDF

A Study of Design and Analysis on the High-Speed Serial Interface Connector (고속 직렬 인터페이스 커넥터의 설계 및 분석에 대한 연구)

  • Lee, Hosang;Shin, Jaeyoung;Choi, Daeil;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1084-1096
    • /
    • 2016
  • This paper presents method of design and analysis of a high-speed serial interface connector with a data rate of 12.5 Gbps. A high-speed serial interface connector is composed of various material and complex structures. It is very difficult to match the impedance of each discontinuous portion of connector. Therefore, this paper proposes the structure of a connector line that be simplified a connector. In the structure of proposed connector line, this research presents a method for extracting R, L, C and G parameters, analyzing the differential mode impedance, and minimizing the impedance discontinuity using time domain transmissometry and time domain reflectometry. This paper applies the proposed methods in the connector line to the high-speed serial interface connector. The proposed high-speed serial interface connector, which consists of forty-four pins, is analyzed signal transmission characteristics by changing the width and spacing of the four pins. According to the analysis result, as the width of the ground pin increases, the impedance decreases slightly. And as the distance between the ground pin and the signal pin increases, the impedance increases. In addition, as the width of the signal pin increases, the impedance decreases. And as the distance between the signal pin and the signal pin increases, the impedance decreases. The impedance characteristic of initial connector presents ranges from 96 to $139{\Omega}$. Impedance characteristic after applying the structure of proposed connector is shown as a value between 92.6 to $107.5{\Omega}$. This value satisfies the design objective $100{\Omega}{\pm}10%$.

Automatic Geometric Calibration of KOMPSAT-2 Stereo Pair Data (KOMPSAT-2 입체영상의 자동 기하 보정)

  • Oh, Kwan-Young;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.2
    • /
    • pp.191-202
    • /
    • 2012
  • A high resolution satellite imagery such as KOMPSAT-2 includes a material containing rational polynomial coefficient (RPC) for three-dimensional geopositioning. However, image geometries which are calculated from the RPC must have inevitable systematic errors. Thus, it is necessary to correct systematic errors of the RPC using several ground control points (GCPs). In this paper, we propose an efficient method for automatic correction of image geometries using tie points of a stereo pair and the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) without GCPs. This method includes four steps: 1) tie points extraction, 2) determination of the ground coordinates of the tie points, 3) refinement of the ground coordinates using SRTM DEM, and 4) RPC adjustment model parameter estimation. We validates the performance of the proposed method using KOMPSAT-2 stereo pair. The root mean square errors (RMSE) achieved from check points (CPs) were about 3.55 m, 9.70 m and 3.58 m in X, Y;and Z directions. This means that we can automatically correct the systematic error of RPC using SRTM DEM.

A Study on Estimation of a Beat Spectrum in a FMCW Radar (FMCW 레이다에서의 비트 스펙트럼 추정에 관한 연구)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2511-2517
    • /
    • 2009
  • Recently, a FMCW radar is used for the various purposes in the short range detection and tracking of targets. The main advantages of a FMCWradar are the comparative simplicity of implementation and the low peak power transmission characterizing the very low probability of signal interception. Since it uses the frequency modulated continuous wave for transmission and demodulation, the received beat frequency represents the range and Doppler information of targets. Detection and extraction of useful information from targets are performed in this beat frequency domain. Therefore, the resolution and accuracy in the estimation of a beat spectrum are very important. However, using the conventional FFT estimation method, the high resolution spectrum estimation with a low sidelobe level is not possible if the acquisition time is very short in receiving target echoes. This kind of problems deteriorates the detection performance of adjacent targets having the large magnitude differences in return echoes and also degrades the reliability of the extracted information. Therefore, in this paper, the model parameter estimation methods such as autoregressive and eigenvector spectrum estimation are applied to mitigate these problems. Also, simulation results are compared and analyzed for further improvement.

Analysis of Enantiomeric Composition of Chiral Flavor Components from Dried Ginger (Zingiber afficinale Roscoe) (건생강에 함유된 키랄성 향기성분의 이성질체 조성 분석)

  • Seo, Hye-Young;No, Ki-Mi;Shim, Seong-Lye;Ryu, Keun-Young;Han, Kyu-Jae;Gyawali, Rajendra;Kim, Kyong-Su
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.7
    • /
    • pp.874-880
    • /
    • 2006
  • The volatile compounds of Zingiber officinale Roscoe were extracted by simultaneous steam distillation and extraction (SDE) method and identified with gas chromatigraphy/mass spectrometer (GC/MS) analysis. Enantiomeric compositions of chiral compounds were determined by multidimensional gas chromatography/mass spectrometer (MDGC/MS). A total of 57 compounds were indentified and quantified, including zingiberene, ${\beta}-sesquiphellandrene$, ${\beta}-bisabolene$, $(E,E)-{\alpha}-farnesene$ and ${\alpha}-curcumene$. Among them, zingiberene (38.41%) was founds as the predominantly abundant component. ${\alpha}-Pinene$ and nerolidol in dried ginger were detected by high enantiomeric purity (>96%) for (S)-form, and ${\beta}-pinene$ was detected only (R)-form. The enantiomeric composition of ${\alpha}-terpineol$ revealed 72.0% for (R)-form, and linalool and 4-terpineol showed mixtures of both enantiomers. (S)-Enantiomer was the major enantiomer of limonene having enatiomeric excess of 17.2%. Hence the enantiomeric composition of these compounds can be used as parameter for authenticty control of Zingiber officinale.

Adsorption Characteristic of Brownish Dark Colored Compounds from the Hot Water Extract of Auricularia auricula Fruit Body (흑목이 버섯 자실체의 열수추출물로부터 흑갈색 색소 성분의 흡착 특성)

  • Kim, Hyeon-Min;Hur, Won;Lim, Kun Bin;Lee, Shin-Young
    • Food Engineering Progress
    • /
    • v.13 no.2
    • /
    • pp.138-146
    • /
    • 2009
  • The crude polysaccharide fraction from fruit body of Auricularia auricula were obtained by using hot water extraction and ethanol precipitation. As the crude polysaccharide fraction contained the brownish dark colored compounds, the adsorption study of pigments from the crude polysaccharide using activated carbon was carried out. The pigment compounds showed an absorption characteristic with $\lambda_{max}$ of 230 nm and the absorbance at 230 nm was taken as color intensity. Adsorption capacity of pigment depended on increase of the activated carbon to sample loading ratio. The adsorption capacity increased with increase of pH and temperature in the pH range of 3.0-7.0 and temperature range of 25-40$^{\circ}C$, but decreased in the temperature range of 40-70$^{\circ}C$. The optimum capacity was obtained at addition of 16.7 mg activated carbon per mL sample solution (concentration = 3 mg/mL) at pH of 7.0 and temperature of 40$^{\circ}C$. Treatment for 10 min was sufficient to achieve the 80% decolorization and 1.25 fold purification of polysaccharide. Langmuir isotherm and pseudo second-order kinetic model provided the best fitting for adsorption of the brownish dark colored compounds onto powdered active carbon. The activation energies of adsorption from the Langmuir isotherm parameter in the ranges of 25-40$^{\circ}C$ and 40-70$^{\circ}C$ was -2.54 and 4.38 kcal/g, respectively. The results of low activation energy also indicated that the adsorption process was a physical adsorption which was controlled by diffnsion.

SAR Image Impulse Response Analysis in Real Clutter Background (실제 클러터 배경에서 SAR 영상 임펄스 응답 특성 분석)

  • Jung, Chul-Ho;Jung, Jae-Hoon;Oh, Tae-Bong;Kwang, Young-Kil
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.99-106
    • /
    • 2008
  • A synthetic aperture radar (SAR) system is of great interest in many fields of civil and military applications because of all-weather and luminance free imaging capability. SAR image quality parameters such as spatial resolution, peak to sidelobe ratio (PSLR), and integrated sidelobe ratio (ISLR) can be normally estimated by modeling of impulse response function (IRF) which is obtained from various system design parameters such as altitude, operational frequency, PRF, etc. In modeling of IRF, however, background clutter environment surrounding the IRF is generally neglected. In this paper, analysis method for SAR mage quality is proposed in the real background clutter environment. First of all, SAR raw data of a point scatterer is generated based on various system parameters. Secondly, the generated raw data can be focused to ideal IRF by range Doppler algorithm (RDA). Finally, background clutter obtained from image of currently operating SAR system is applied to IRF. In addition, image quality is precisely analyzed by zooming and interpolation method for effective extraction of IRF, and then the effect of proposed methodology is presented with several simulation results under the assumption of estimation error of Doppler rate.