• Title/Summary/Keyword: Parameter Changes

Search Result 1,264, Processing Time 0.028 seconds

Elastic Critical Loads of Tapered Compression Members with Simply Supported Ends (단순지지 변단면 압축재의 임계하중)

  • Song, Chang-Young
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.5
    • /
    • pp.83-87
    • /
    • 2007
  • Elastic critical loads of sinusoidally tapered bars with simply supported ends are determined by finite element method. The parameters considered in the analysis are taper parameter (=a) and section property parameter (=m). The analysis result for the special case of porismatic bar (a=0) shows good agreement with the existing value. The changes of the critical load coefficients are expressed by an algebraic equation. The coefficients appearing in the equations are determined by regression technique. The critical loads coefficients estimated by the proposed equations reveal little errors when they are compared with those determined by finite element method.

  • PDF

Photovoltaic Modified β-Parameter-based MPPT Method with Fast Tracking

  • Li, Xingshuo;Wen, Huiqing;Jiang, Lin;Lim, Eng Gee;Du, Yang;Zhao, Chenhao
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.9-17
    • /
    • 2016
  • Maximum power point tracking (MPPT) is necessary for photovoltaic (PV) power system application to extract the maximum possible power under changing irradiation and temperature conditions. The β-parameter-based method has many advantages over conventional MPPT methods; such advantages include fast tracking speed in the transient stage, small oscillations in the steady state, and moderate implementation complexity. However, a problem in the implementation of the conventional beta method is the choice of an appropriate scaling factor N, which greatly affects both the steady-state and transient performance. Therefore, this paper proposes a modified β-parameter-based method, and the determination of the N is discussed in detail. The study shows that the choice of the scaling factor N is determined by the changes of the value of β during changes in irradiation or temperature. The proposed method can respond accurately and quickly during changes in irradiation or temperature. To verify the proposed method, a photovoltaic power system with MPPT function was built in Matlab/Simulink, and an experimental prototype was constructed with a solar array emulator and dSPACE. Simulation and experimental results are illustrated to show the advantages of the improved β-parameter-based method with the optimized scaling factor.

Database Management System Parameter Tuning Processes for Improving Database System Performance (데이터베이스 시스템 성능 향상을 위한 데이터베이스 관리 시스템 파라미터 튜닝 프로세스)

  • 최용락;윤병권;정기원
    • The Journal of Society for e-Business Studies
    • /
    • v.7 no.1
    • /
    • pp.107-127
    • /
    • 2002
  • Database system parameter tuning is one of database system tuning that achieve to improve performance of database system with application program tuning and data model tuning. By parameter tuning adjusts value of entry that is staled in data dictionary's parameter file that is included to database system, it is thing which make relevant database system can display performance of most suitable. And, it is that achievement is one o( possible tuning method immediately without occurrence of additional expense or involved hardware for database system performance elevation and ashes composition of software. But, it is actuality that administration about parameter practical use is not achieved, and is using Default Value of parameter that database management system offers just as it is systematically. So, this paper presents parameter tuning process that can :achieve Parameter tuning of database system that is operating present systematically, and parameter tuning process each activity important input urea and tuning achievement product. And explain about effect and result that happen by sort database system performance and parameters that it is affinity systematically, and grasp relationships between parameter, and change parameter of string database system. And not that parameter uses contents that specify by fixing when establish database administration system, is going to emphasize and explain that must utilize changing continuously during database system operation. It changes parameter entry value how in various kinds different operation environment and present if must apply, and will arrange effect that this parameter enoy value alteration gets in performance liking into account point that is actuality that is using parameter that define database administrators when install the database system just as it is continually without alteration.

  • PDF

Numerical Solution of Steady Flow and Heat Transfer around a Rotating Circular Cylinder (가열된 회전원주를 지나는 정상유동 및 열전달해석)

  • 부정숙;이종춘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3135-3147
    • /
    • 1993
  • A numerical method is presented which can solve the steady flow and heat transfer from a rotating and heated circular cylinder in a uniform flow for a range of Reynolds number form 5 to 100. The steady response of the flow and heat transfer is simulated for various spin parameter. The effects on the flow field and heat transfer characteristics known as lift, drag and heat transfer coefficient are analyzed and the streamlines, velocity vectors, vorticity, temperature distributions around it were scrutinized numerically. As spin parameter increases the region of separation vortex becomes smaller than upper one and the lower region will vanish. The lift force, a large part is due to the pressure force, increases as the Reynolds number and it increases linearly as spin parameter increases. The pressure coefficient changes rapidly with spin parameter on the lower surface of the cylinder and the vorticity is sensitive to the spin parameter near separation region. As spin parameter increases the maximum heat coefficient and the thin thermal layer on front region are moved to direction of rotation. However, with balance between the local increase and decrease, the overal heat transfer coefficient is almost unaffected by rotation.

Tracking control of variable stiffness hysteretic-systems using linear-parameter-varying gain-scheduled controller

  • Pasala, D.T.R.;Nagarajaiah, S.;Grigoriadis, K.M.
    • Smart Structures and Systems
    • /
    • v.9 no.4
    • /
    • pp.373-392
    • /
    • 2012
  • Tracking control of systems with variable stiffness hysteresis using a gain-scheduled (GS) controller is developed in this paper. Variable stiffness hysteretic system is represented as quasi linear parameter dependent system with known bounds on parameters. Assuming that the parameters can be measured or estimated in real-time, a GS controller that ensures the performance and the stability of the closed-loop system over the entire range of parameter variation is designed. The proposed method is implemented on a spring-mass system which consists of a semi-active independently variable stiffness (SAIVS) device that exhibits hysteresis and precisely controllable stiffness change in real-time. The SAIVS system with variable stiffness hysteresis is represented as quasi linear parameter varying (LPV) system with two parameters: linear time-varying stiffness (parameter with slow variation rate) and stiffness of the friction-hysteresis (parameter with high variation rate). The proposed LPV-GS controller can accommodate both slow and fast varying parameter, which was not possible with the controllers proposed in the prior studies. Effectiveness of the proposed controller is demonstrated by comparing the results with a fixed robust $\mathcal{H}_{\infty}$ controller that assumes the parameter variation as an uncertainty. Superior performance of the LPV-GS over the robust $\mathcal{H}_{\infty}$ controller is demonstrated for varying stiffness hysteresis of SAIVS device and for different ranges of tracking displacements. The LPV-GS controller is capable of adapting to any parameter changes whereas the $\mathcal{H}_{\infty}$ controller is effective only when the system parameters are in the vicinity of the nominal plant parameters for which the controller is designed. The robust $\mathcal{H}_{\infty}$ controller becomes unstable under large parameter variations but the LPV-GS will ensure stability and guarantee the desired closed-loop performance.

Effect of Window Function for Measurement of Ultrasonic Nonlinear Parameter Using Fast Fourier Transform of Tone-Burst Signal (톤버스트 신호의 퓨리에 변환을 이용한 초음파 비선형 파라미터 측정에서 창함수가 미치는 영향)

  • Lee, Kyoung-Jun;Kim, Jongbeom;Song, Dong-Gi;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.4
    • /
    • pp.251-257
    • /
    • 2015
  • In ultrasonic nonlinear parameter measurement using the fast Fourier transform(FFT) of tone-burst signals, the side lobe and leakage on spectrum because of finite time and non-periodicity of signals makes it difficult to measure the harmonic magnitudes accurately. The window function made it possible to resolve this problem. In this study, the effect of the Hanning and Turkey window functions on the experimental measurement of nonlinear parameters was analyzed. In addition, the effect of changes in tone burst signal number with changes in the window function on the experimental measurement was analyzed. The result for both window functions were similar and showed that they enabled reliable nonlinear parameter measurement. However, in order to restore original signal amplitude, the amplitude compensation coefficient should be considered for each window function. On a separate note, the larger number of tone bursts was advantageous for stable nonlinear parameter measurement, but this effect was more advantageous in the case of the Hanning window than the Tukey window.

Effects of Electrical and Acoustical Variations for Loudspeaker due to Fabrication Processes (조립과정이 스피커의 전기 및 음향특성에 미치는 영향)

  • Park, Seok-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.155-159
    • /
    • 2004
  • In this paper, it was analyzed the characteristics of electrical and acoustical variations for loudspeaker due to fabrication processes. First, mass of each components of loudspeaker was measured by electric precision scale and performed statistical analysis. Second. Thiele-Small parameters of sample loudspeakers produced by unskilled students were identified by known mass parameter identification method using electrical impedance method and investigated on the variations of each parameter. Electrical impedance tests and acoustic frequency responses were measured on sample loudspeakers and variations were examined to grasp relationship between components variation and fabrication processes. Main factors to effect the changes of electrical impedance were concluded by fabrication processes errors not by components of loudspeaker.

  • PDF

A study on winch and load motion control system design considering dynamic parameter variation (동적파라미터 변동을 고려한 윈치 및 부하 운동제어시스템설계에 관한 연구)

  • PARK, Hwan-Cheol;KIM, Young-Bok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.3
    • /
    • pp.293-301
    • /
    • 2017
  • In this study, a winch and load motion control system design method is introduced. Especially, the winch and load (moving cart) are connected with long wire rope which is extended to few kilometers long. Therefore, the rope length changes such that many dynamic parameter values are changed as well by winding and releasing the rope from the winch system. In this paper, the authors designed the control system by considering the real time parameter variation to occupy and keep good control performance continuously. The effectiveness of introduced method was evaluated by simulation results.