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Abstract 
 

Maximum power point tracking (MPPT) is necessary for photovoltaic (PV) power system application to extract the maximum 
possible power under changing irradiation and temperature conditions. The β-parameter-based method has many advantages over 
conventional MPPT methods; such advantages include fast tracking speed in the transient stage, small oscillations in the steady state, 
and moderate implementation complexity. However, a problem in the implementation of the conventional beta method is the choice 
of an appropriate scaling factor N, which greatly affects both the steady-state and transient performance. Therefore, this paper 
proposes a modified β-parameter-based method, and the determination of the N is discussed in detail. The study shows that the 
choice of the scaling factor N is determined by the changes of the value of β during changes in irradiation or temperature. The 
proposed method can respond accurately and quickly during changes in irradiation or temperature. To verify the proposed method, a 
photovoltaic power system with MPPT function was built in Matlab/Simulink, and an experimental prototype was constructed with 
a solar array emulator and dSPACE. Simulation and experimental results are illustrated to show the advantages of the improved 
β-parameter-based method with the optimized scaling factor. 
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I. INTRODUCTION 

Photovoltaics (PV) is now widely regarded globally as one 
of the most important sustainable energy sources. However, 
because of the nonlinear characteristics of PV modules, how 
the maximum possible power can be extracted from installed 
PV systems is still a challenging problem. Therefore, 
maximum power point tracking (MPPT) is necessary and 
widely adopted in PV power systems to extract the maximum 
possible power under any environmental condition. 

Many MPPT methods are discussed in the literature [1]-[3]. 
These methods can be categorized into four categories in terms 
of perturbation step size: 1) methods without step size; 2) 

methods with a fixed step size; 3) methods with variable step 
size; and 4) methods with both fixed and variable step for 
different tracking periods. 

The fractional open-circuit voltage method [4] originates 
from the relationship between the maximum power point (MPP) 
voltage and open-circuit voltage (Voc). Similarly, the basic 
principle of fractional short-circuit current method [5] is the 
relationship of the MPPT current with the short-circuit current 
(Isc). They are simple and effective ways to obtain the 
maximum power. These methods can determine the MPP 
directly without any perturbation steps; thus, they belong to the 
first category. However, because these methods can provide 
only approximate calculations of the voltage and current at the 
MPP, the PV array technically never operates at the true MPP.  

For the fixed-step methods, perturb and observe (P&O) [6], 
[7], hill climbing (HC) [8], and incremental conductance (INC) 
[8]-[10] are widely used because they are easy to implement. 
However, during the steady-state stage, these methods always 
fluctuate around the MPP because of truncation error in digital 
processing [11]. Apart from steady-state oscillations, these 
methods are easily confused when the solar irradiation 
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increases [9]. Furthermore, a small step size is usually adopted 
in these fixed step size methods to achieve small steady-state 
oscillations. Thus, dynamic tracking speed would be sacrificed, 
especially under quickly changing irradiation conditions. 
Therefore, many modified HC, P&O, and INC methods with 
variable step have been proposed to address the problem 
between small steady-state oscillations and quick dynamic 
behavior [12]-[20]. 

The basic idea of variable step methods is to create a large 
step size during the transient stage and then a small step size 
during the steady state. Generally, the step size can be adjusted 
automatically according to the derivative of power with respect 
to the PV voltage (dP/dV) or converter duty cycle (dP/dD). 
Therefore, on the basis of the slope of the Power–Voltage (P-V) 
curve [12]-[15] and the P–D curve [16], the variable step is 
illustrated as a linear equation: 

( ) ( 1)
D(k) = D(k-1)  N  

( ) ( 1)

P k P k

V k V k

 
 

 
      (1) 

and 

( ) ( 1)
D(k) = D(k-1)  N  

D( ) ( 1)

P k P k

k D k

 
 

 
      (2) 

where k and k−1 refer to the present and the previous instants, 
respectively, and N is the scaling factor determined at the 
sampling period to tune the step size. From (1) and (2), the step 
size is large when the operating point is far from the MPP and 
becomes small when it is close to the MPP. One difficulty in 
the implementation of the variable step size methods is how to 
choose and optimized the scaling factor N [17]. Once the 
scaling factor N is assigned, it cannot be changed during the 
tracking process [18]. A large value of N can lead to undesired 
performances for the steady-state condition, such as large 
oscillations around the MPP [19]. Therefore, a small value of N 
is usually used. However, the step size becomes small when the 
operating point is close to the peak of P–V curve and P–D 
curve, and the convergence of the system toward the MPP 
becomes slow. Although adaptive scaling factor method is 
implemented in [20], this method improves efficiency by only 
0.2% under a low irradiation condition. Furthermore, the 
adaptive scaling factor method increases the computational 
load and implementation cost; such increase is unfavorable. 
Moreover, these variable step methods are unable to respond 
accurately with the change of solar irradiation [9]. 

Many hybrid methods, which consist of more than two 
methods, have been proposed recently [21]-[27]. Hybrid 
methods usually include at least two stages: the transient stage, 
which will bring the operating point to a region near the MPP 
for fast tracking, and the steady-state stage, which will allow 
the fixed-step method to gradually approach the exact MPP. 
Among these hybrid methods, the Beta method proposed by 
Jain and Agarwal [25] adopts a variable and a fixed step size 
for the transient stage and the steady-state stage, respectively. 
Unlike other hybrid methods, the Beta method tracks an 

intermediate variable β rather than the change of the power. 
Comparison results [26] indicate that the Beta method has a 
fast tracking speed in the transient stage, small oscillations in 
the steady-state stage, and moderate implementation 
complexity.  

However, the potential of this method is not fully exploited 
in terms of dynamic response speed and tracking factor [25], 
[26]. Although the conventional Beta method has been 
optimized by identifying the range of the parameter β for 
various weather conditions, determining the optimal scaling 
factor N is still a problem. In [27], a trial-and-error approach is 
utilized to adjust this scaling factor N. However, the optimal 
value obtained from this process is suitable for specific 
operating conditions only. Therefore, this paper proposed a 
modified Beta method, where the choice of the scaling factor N 
is determined by the changes of the value of β during changes 
in irradiation or temperature. Two different values of the 
scaling factor N are implemented in the proposed method to 
generate the appropriate step sizes. Furthermore, because the 
modified Beta method can identify the direction of irradiation 
changes by the parameter β, the proposed method can respond 
accurately during a change in irradiation or temperature, unlike 
the conventional Beta method.  

 

II. MODIFIED BETA METHOD 

A. Review of the Conventional Beta Method 

The theory of the conventional Beta method has been 
explained by Jain and Agarwal in [25], and the intermediate 
variable β is given as 

= ln( ) - c V
I

V
                (3) 

where V and I are the PV module output voltage and output 
current, respectively, and c=q/(NsAKT) is the diode constant. 

The flowchart of the conventional Beta method is shown in 
Fig. 1. First, the voltage and current are measured, and the 
value of βa can be calculated continuously. If tβa is not within 
the bounding range of (βmin , βmax ), then the Beta method turns 
into the transient stage; otherwise, the Beta method switches 
into the steady-state stage, and P&O or other fixed-step 
methods will be implemented. In the transient stage, a guiding 
parameter βg is adopted in calculating the variable step ΔD, 
which is expressed by 

D = N ( )a g                (4) 

The algorithm of the Beta method indicates that the range of 
the parameter β, such as βmin, βmax, and βg, needs to be 
identified. According to [25]-[27], the range of parameter β 
depends on the working conditions of the PV module, namely, 
the irradiation and temperature. In this paper, the assumed 
working conditions and the corresponding magnitudes of β are 
shown in Fig. 2 and Table I. Therefore, the range of parameter  
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Fig. 1. Flowchart of the conventional Beta method. 
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Fig. 2. Range of β with voltage and power under various 
irradiation and temperature conditions. 

TABLE I 
VALUES AT VARIOUS IRRADIATIONS AND TEMPERATURES 

No. Irradiation Temperature β 
1 1000 W/m2 45 °C -15.4505 

2 1000 W/m2 5 °C -18.3431 

3 300 W/m2 45 °C -15.9587 

4 300 W/m2 5 °C -19.0214 

 
β, namely, βmin = −19.02 and βmax = −15.45, is determined. 
Furthermore, the middle value between β min and β max is 
chosen for βg, namely, βg = −17.24. 

B. Scaling Factor N for the Beta Method 

After the range of the parameter β is identified, the scaling 
factor N needs to be determined to attain the best performance. 
The different values of the scaling factor N are implemented 
for the Beta method, as shown in Fig. 3. 

Fig. 3(a) shows that the larger value of N achieves better 
performance when the irradiation changes significantly. 
However, an excessively large value of N can cause an overly 
large duty cycle, which can result in undesired performance, 
namely, large steady-state oscillations, as shown in Fig. 3(b). 
By contrast, the smaller N can avoid this undesired situation. 
However, the tracking speed is relatively slow with increasing 
irradiation. Therefore, the medium value of the scaling factor N 
was chosen in [27] as a compromise to this dilemma. 

C. Proposed MPPT Method 
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Fig. 3. Different values of scaling factor N for the conventional 
Beta method. (a) During increasing irradiation. (b) During 
decreasing irradiation. 
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Fig. 4. Flowchart of the modified Beta method. 

 
A modified Beta method is proposed to solve the issue of the 

choice of scaling factor N [27], as shown in Fig. 4. Unlike the 
conventional Beta method, a new judgment is added in the 
proposed method to determine whether the value of βa is above 
or below the bounding range. Then, two different scaling 
factors, N1 and N2, are used to generate the variable step size 
ΔD. The expressions are shown below: 

max 1 ( ) for a g aD N              (5) 

min 2 ( ) for a g aD N              (6) 

Fig. 5 illustrates the value of β when the irradiation varies 
between 1000 and 400 W/m2. As shown in Fig. 5, when the 
irradiation suddenly decreases from 1000 W/m2 to 400 W/m2, 
the duty cycle of the PV converter remains unchanged and the 
operating point will be located at load line 1. Thus, the 
operating point switches immediately from point A to point B, 
which is the intersection point of the load line 1 and the I-V 
curve at 400 W/m2. Considering that the value of βa at the point  
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Fig. 5. I-V and β-V curves of 1000 and 400W/m2 irradiation. 
 
B is larger than βmax, N1 is used to generate ΔD. Then, the 
operating point continues to move towards point C, which is 
the MPP for 400 W/m2. Similarly, when the irradiation 
suddenly increases from 400 W/m2 to 1000 W/m2, the 
operating point first switches immediately from point C to 
point D. The value of β at the point D is smaller than βmin; thus, 
N2 is used to generate ΔD. 

N1 and N2 are determined according to the variation of β 
due to a change in the environment, such as solar irradiation. 
As shown in Fig. 5, the term “βa – βg” shown in (5) is much 
larger than the same item in (6). If a scaling factor is used for 
both (5) and (6), then ΔD for (5) is larger than ΔD for (6), 
which will result in low tracking speed for some cases. Thus, 
the proposed method utilizes a small value of scaling factor N1 
to compensate for the large value of the term “βa – βg” in (5) 
and a large value of N2 to compensate for the small value of 
“βa – βg” in (6). Therefore, the proposed method can avoid the 
excessively small or excessively large step size. 

Furthermore, because the proposed method can identify the 
direction of irradiation changes by parameter β, the proposed 
method can respond accurately during changes in irradiation 
unlike the fixed-step and other variable step methods.  

 

III. RESULTS AND DISCUSSION 

A. Simulation Results  

Fig. 6 shows the structure of the entire MPPT system in 
Matlab/Simulink; the structure includes the PV module, a boost 
converter, and an MPPT controller. The PV module model is 
designed based on the PV module MSX-60W, as shown in 
Table II. The values of the components in the boost converter 
are as follows: Cin = 470 μF, Cout = 47 μF, L = 0.1 mH, Rload = 
87 Ω. The switching frequency of the converter is set to 
10 kHz. 

To investigate the performance of the proposed method 
under fast irradiation, the initial irradiation level for the 
simulation is 900 W/m2. At t = 0.5 s, the irradiation level 
decreases to 300 W/m2, increases to 800 W/m2 at t = 2.5 s, and 
finally decreases to 400 W/m2 at t = 4.5 s. The sampling time 
for the MPPT controller is 0.03 s [28]. Furthermore, P&O [6], 
the variable-step method variable-step-size INC (VSSINC) 
[13], and the conventional Beta method with two typical  

TABLE II 
MAIN PRODUCT PARAMETERS OF THE MSX-60W 

Parameter Symbol Value 
Maximum power Pmpp 60 W 
Voltage at MPP Vmpp 17.1 V 
Current at MPP Impp 3.5 A 

Open-circuit voltage Voc 21.1 V 
Short-circuit current Isc 3.8 A 

 
scaling factors [27] are implemented; they are compared with 
the proposed method under the same condition. The fixed step 
size for P&O is set as 0.5%. The scaling factor for VSSINC is 
set as 0.7. The scaling factors for the proposed method, N1 and 
N2, are set as 2 and 6, respectively, in the simulation. The 
simulation results are illustrated in Fig. 7. 

As shown in Fig. 7(a), P&O has a slow tracking speed when 
the irradiation level varies rapidly. Consequently, power loss 
during the transient stage is extremely high compared with the 
other methods. Compared with the P&O method, VSSINC has 
a faster tracking speed especially when the irradiation increases, 
as shown in Fig. 7(b). However, the tracking speed of VSSINC 
is relatively slow when the irradiation decreases. Furthermore, 
P&O and VSSINC are unable to respond accurately when the 
irradiation increases. 

The conventional Beta method with scaling factors N = 2 
and N = 6 are illustrated in Figs. 7(c) and 7(d), respectively. 
When the irradiation increases, the conventional Beta method 
with the larger scaling factor has a faster tracking speed and 
lower power loss than that with a smaller scaling factor. 
However, when the irradiation increases, the conventional Beta 
method with the larger scaling factor is unable to track the 
MPP because of the excessively large step size. By contrast, 
the conventional Beta method with the smaller scaling factor 
has a faster tracking speed under increasing irradiation. Fig. 7(e) 
illustrates the simulation result for the proposed method. The 
proposed method implements two different scaling factors, N1 
and N2, for decreasing and increasing irradiation, respectively. 
Therefore, the step size for the proposed method in the 
transient stage is regulated properly. Unlike the conventional 
Beta method, the proposed method increases the tracking speed 
and avoids undesired performance. Furthermore, the proposed 
method can respond accurately when the irradiation changes, 
unlike P&O and VSSINC. 

Fig. 7(f) illustrates the variation of the value of β for the 
conventional Beta method and the proposed method. As shown 
in Fig. 7(f), the conventional Beta method with a small scaling 
factor has a slower convergence speed of β when the irradiation 
increases. Furthermore, a large scaling factor could cause the β 
to be unable to converge when the irradiation decreases. The 
proposed method can avoid these drawbacks, and the 
convergence speed of β is fast. Both the conventional Beta 
method and the proposed method implement P&O in the 
steady state; thus, the value of β also oscillated. 



Photovoltaic Modified β-Parameter-based …                                 13 
 

 

Fig. 6. Structure of the MPPT system in Matlab/Simulink. 
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Fig. 7. Simulation results for the conventional MPPT methods: (a) P&O, (b) VSSINC, (c) the conventional Beta method with N=2, (d) the 
conventional Beta method with N=6, (e) the proposed method, (f) the variation of the value of β. 
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Fig. 8. Experimental prototype of the MPPT system. Fig. 9. Soft panel of the PV emulator. 
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Fig. 10. Experimental results for the conventional MPPT methods: (a) P&O, (b) VSSINC, (c) the conventional Beta method with N=2, (d) 
the conventional Beta method with N=6, (e) the proposed method, (f) the variation of the value of β. 
 

B. Experimental Results 
To verify the simulation performance, an experimental 

prototype of the MPPT system was proposed, as shown in Fig. 
8. This prototype includes a boost converter, a PV emulator, 
and a dSPACE controller.  

The specifications of the main components for boost 
converter are the same as those in the simulation. Current 
(LA25-NP) and voltage (LV25-P) sensors were used to sense 
the current and voltage of the PV emulator.  

dSPACE DS1104 is used as a control platform to employ 
Matlab/Simulink tools for the development of the control 
algorithm and for hardware implementation. The controller 
parameters for the experiments are the same as those in the 
simulation. 

The PV emulator Chroma ATE-62050H-600S was used; this 
emulator has a programmable DC supply with solar array I-V 
simulation. The soft panel of the PV emulator is shown in Fig. 
11 and is used to edit multiple I-V curves and simulate the 
MPPT trace test under environmental changes. The PV 

emulator has dynamic constraints and has a slower response 
speed than a practical crystalline PV [29]. Therefore, the 
sampling time for the MPPT controller is 3 s in this 
experiment. 

Compared with the other methods, P&O requires the longest 
time to track the MPP when the irradiation changes suddenly, 
as shown in Fig. 10(a). Consequently, the power loss during 
the transient stage is also the highest among these methods. 
The tracking time for the VSSINC is generally shorter than that 
of P&O, especially when the irradiation increases, as shown in 
Fig. 10(b). However, the VSSINC also needs a long time to 
track the MPP under decreasing irradiation. Furthermore, P&O 
and VSSINC are unable to respond accurately when the 
irradiation increases, especially VSSINC. 

The conventional Beta method with the scaling factor N = 2 
has a much faster tracking speed than P&O and VSSINC, as 
shown in Fig. 10(c). Consequently, the power loss during the 
transient stage is also smaller than that in P&O and VSSINC. 
However, the tracking speed under increasing irradiation is  
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Fig. 11. Experimental result comparison for P&O, VSSINC, the 
conventional Beta method, and the proposed method: (a) tracking 
time, (b) dynamic tracking efficiency, (c) static tracking efficiency. 

 
relatively slow. By contrast, the tracking speed of the 
conventional Beta method with N = 6 is faster than that with 
N = 2 when the irradiation increases, as shown in Fig. 10(d). 
However, it cannot track the MPP under decreasing irradiation. 

The proposed method overcomes the drawbacks of the 
conventional Beta method and has the fastest tracking speed 
and lowest power loss among all methods, as shown in Fig. 
10(e). Furthermore, the proposed method can respond 
accurately under irradiation changes, unlike P&O and 
VSSINC. 

Fig. 10(f) illustrates the variation of the value of β for the 
conventional Beta method and the proposed method; this 
variation is similar to that in the simulation. 

Finally, to evaluate the performance of these methods, the 
experimental results are summarized in terms of tracking time, 
dynamic tracking efficiency, and static tracking efficiency in 
Fig. 11. Dynamic tracking efficiency and static tracking 
efficiency are defined according to the EN50530 standard [30] 
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where Tm refers to measured time, PPV(t) refers to instantaneous 
power drawn by the PV emulator, and PMPP(t) refers to the 
MPP power provided theoretically by the PV emulator. For the 
dynamic tracking efficiency comparison, the tracking time for 
irradiation variations, Tm, changes for various methods. For 
example, when the irradiation increases from 900 W/m2 to 

300 W/m2, Tm of P&O and the proposed method is 116 and 
12 s, respectively. For the static tracking efficiency comparison, 
the parameter Tm is set as 20 s for all these methods. 

Fig. 11 indicates that the tracking time of the proposed 
method is the shortest among all methods. Therefore, the 
dynamic tracking efficiency of the proposed method is the 
highest. However, because the proposed method implements 
the fixed-step size P&O in the steady-state stage, the static 
efficiency of the proposed method is similar to that of P&O 
and the conventional Beta method, and is slightly lower than 
that of VSSINC. 

 

IV. CONCLUSION 

This paper proposed a modified Beta method that is based 
on the changes of the value of β during changes in irradiation. 
Two different values of scaling factor N are implemented in the 
proposed method to solve the difficulty of selecting the scaling 
factor N for the conventional Beta method. The proposed 
method can respond accurately during changes in irradiation. A 
comparison among the proposed method, P&O, VSSINC, and 
the conventional Beta method is conducted through simulations 
and experiments. Simulation and experiment results verify that 
the proposed method has the fastest tracking speed and the 
lowest power loss among these methods during the transient 
stage.  
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