• 제목/요약/키워드: Parallel three-level converter

검색결과 20건 처리시간 0.02초

Analysis of a New Parallel Three-Level Zero-Voltage Switching DC Converter

  • Lin, Bor-Ren;Chen, Jeng-Yu
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.128-137
    • /
    • 2015
  • A novel parallel three-level zero voltage switching (ZVS) DC converter is presented for medium voltage applications. The proposed converter includes three sub-circuits connected in parallel with the same power switches to share load current and reduce the current stress of passive components at the output side. Thus, the size of the output chokes is reduced and the switch counts in the proposed converter are less that in the conventional parallel three-level DC/DC converter. Each sub-circuit combines one half-bridge converter and one three-level converter. The transformer secondary windings of these two converters are connected in series in order to reduce the size of output inductor. Due to the three-level circuit topology, the voltage stress of power switches is equal to $V_{in}/2$. Based on the resonant behavior by the output capacitance of power switches and the leakage inductance (or external inductance) at the transition interval, each switch can be turned on under ZVS. Finally, experiments based on a 2 kW prototype are provided to verify the performance of the proposed converter.

A Parallel Hybrid Soft Switching Converter with Low Circulating Current Losses and a Low Current Ripple

  • Lin, Bor-Ren;Chen, Jia-Sheng
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1429-1437
    • /
    • 2015
  • A new parallel hybrid soft switching converter with low circulating current losses during the freewheeling state and a low output current ripple is presented in this paper. Two circuit modules are connected in parallel using the interleaved pulse-width modulation scheme to provide more power to the output load and to reduce the output current ripple. Each circuit module includes a three-level converter and a half-bridge converter sharing the same lagging-leg switches. A resonant capacitor is adopted on the primary side of the three-level converter to reduce the circulating current to zero in the freewheeling state. Thus, the high circulating current loss in conventional three-level converters is alleviated. A half-bridge converter is adopted to extend the ZVS range. Therefore, the lagging-leg switches can be turned on under zero voltage switching from light load to full load conditions. The secondary windings of the two converters are connected in series so that the rectified voltage is positive instead of zero during the freewheeling interval. Hence, the output inductance of the three-level converter can be reduced. The circuit configuration, operation principles and circuit characteristics are presented in detail. Experiments based on a 1920W prototype are provided to verify the effectiveness of the proposed converter.

병렬입력/직렬출력(PISO) 부스트 컨버터의 출력 전압 밸런싱 특성 해석 (Analysis of Parallel-Input Series-Output(PISO) Boost Converter With Output Voltage Balancing Characteristic)

  • 남현택;차헌녕;김흥근
    • 전력전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.40-46
    • /
    • 2018
  • In this study, the output voltage balancing characteristics of parallel-input series-output (PISO) boost converter is analyzed. The PISO boost converter is derived by combining two basic boost converters. In comparison with the conventional three-level boost converter, the PISO boost converter can balance the output voltages under an unbalanced load condition without requiring additional circuit components and control strategy. A 2 kW prototype converter is built and tested to verify the output voltage balancing characteristics of the PISO boost converter.

New Three-Level PWM DC/DC Converter - Analysis, Design and Experiments

  • Lin, Bor-Ren;Chen, Chih-Chieh
    • Journal of Power Electronics
    • /
    • 제14권1호
    • /
    • pp.30-39
    • /
    • 2014
  • This paper studies a new three-level pulse-width modulation (PWM) resonant converter for high input voltage and high load current applications. In order to use high frequency power MOSFETs for high input voltage applications, a three-level DC converter with two clamped diodes and a flying capacitor is adopted in the proposed circuit. For high load current applications, the secondary sides of the proposed converter are connected in parallel to reduce the size of the magnetic core and copper windings and to decrease the current rating of the rectifier diodes. In order to share the load current and reduce the switch counts, three resonant converters with the same active switches are adopted in the proposed circuit. Two transformers with a series connection in the primary side and a parallel connection in the secondary side are adopted in each converter to balance the secondary side currents. To overcome the drawback of a wide range of switching frequencies in conventional series resonant converters, the duty cycle control is adopted in the proposed circuit to achieve zero current switching (ZCS) turn-off for the rectifier diodes and zero voltage switching (ZVS) turn-on for the active switches. Finally, experimental results are provided to verify the effectiveness of the proposed converter.

인터리빙 동작을 위한 하단 인덕터를 갖는 3-Level Boost Converter (3-Level Boost Converter Having Lower Inductor for Interleaving Operation)

  • 이강문;백승우;김학원;조관열;강정원
    • 전력전자학회논문지
    • /
    • 제26권2호
    • /
    • pp.96-105
    • /
    • 2021
  • Large-scale power converters consist of series or parallel module combinations. In these modular converter systems, the interleaving technique can be applied to improve capacitor reliability by reducing the ripple of the I/O current in which each module operates as a phase difference. However, when applying the interleaving technique for conventional three-level boost converters, the short-circuit period of the converter can be an obstacle. Such problem is caused by the absence of a low-level inductor of the conventional three-level boost converter. To solve this problem, a three-level boost converter with a low-level inductor is proposed and analyzed to enable interleaved operation. In the proposed circuit, the current ripple of the output capacitor depends on the neutral point connections between the modules. In this study, the ripple current is analyzed by the neutral point connections of the three-level boost converter that has a low-level inductor, and the effectiveness of the proposed circuit is proven by simulation and experiment.

Analysis and Implementation of a New ZVS DC Converter for Medium Power Application

  • Lin, Bor-Ren;Shiau, Tung-Yuan
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.1296-1308
    • /
    • 2014
  • This paper presents a new zero voltage switching (ZVS) converter for medium power and high input voltage applications. Three three-level pulse-width modulation (PWM) circuits with the same power switches are adopted to clamp the voltage stress of MOSFETs at $V_{in}/2$ and to achieve load current sharing. Thus, the current stresses and power ratings of transformers and power semiconductors at the secondary side are reduced. The resonant inductance and resonant capacitance are resonant at the transition interval such that active switches are turned on at ZVS within a wide range of input voltage and load condition. The series-connected transformers are adopted in each three-level circuit. Each transformer can work as an inductor to smooth the output current or a transformer to achieve the electric isolation and power transfer. Thus, no output inductor is needed at the secondary side. Three center-tapped rectifiers connected in parallel are used at the secondary side to achieve load current sharing. Compared with the conventional parallel three-level converters, the proposed converter has less switch counts. Finally, experiments based on a 1.44kW prototype are provided to verify the operation principle of proposed converter.

철도차량용 PWM 컨버터방식 비교 (The Comparison of PWM Converter's Topology in Electric Train)

  • 이현원;김남해
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.97-100
    • /
    • 1999
  • AC to DC single phase PWM converter for traction application requires rated high power and voltage. Therefor, series or parallel operation converters are necessary with considering the limitation of the power device specification. This paper compares the characteristic between two parallel operation of conventional PWM converter and Single phase three level converter about comparison of power circuit, cooling system control method and harmonic current by computer simulation.

  • PDF

효율 개선을 위한 직${\cdot}$병렬 공진컨버터 적용 비접촉 전원 (Series-parallel resonant converter using a contactless power supply for the efficiency improvement)

  • 공영수;이현관;김은수;조정구;김종무
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 추계학술대회 논문집
    • /
    • pp.45-48
    • /
    • 2004
  • To improve the efficiency characteristics in the resonant converter using the contact-less power supply with the large air-gap and the long primary winding, this paper suggests the three-level series-parallel resonant converter(SPRC). The voltage gain characteristics of the proposed converter have the unit gain in a resonance frequency point of the series and parallel, and input voltage and current in the primary of SPRC are always In phase for the all equivalent load resistance because of the parallel resonant tank of the high impedance. The results are verified on the simulation based on the theoretical analysis and the 4kW experimental prototype.

  • PDF

Implementation of a ZVS Three-Level Converter with Series-Connected Transformers

  • Lin, Bor-Ren
    • Journal of Power Electronics
    • /
    • 제13권2호
    • /
    • pp.177-185
    • /
    • 2013
  • This paper studies a soft switching DC/DC converter to achieve zero voltage switching (ZVS) for all switches under a wide range of load condition and input voltage. Two three-level PWM circuits with the same power switches are adopted to reduce the voltage stress of MOSFETs at $V_{in}/2$ and achieve load current sharing. Thus, the current stress and power rating of power semiconductors at the secondary side are reduced. The series-connected transformers are adopted in each three-level circuit. Each transformer can be operated as an inductor to smooth the output current or a transformer to achieve the electric isolation and power transfer from the input side to the output side. Therefore, no output inductor is needed at the secondary side. Two center-tapped rectifiers connected in parallel are used at the secondary side to achieve load current sharing. Due to the resonant behavior by the resonant inductance and resonant capacitance at the transition interval, all switches are turned on at ZVS. Experiments based on a 1kW prototype are provided to verify the performance of proposed converter.

직렬 입력 병렬 출력 연결된 LLC 컨버터를 갖는 비엔나 정류기의 DC 링크 전압 평형 제어에 관한 연구 (A Study on the Affected of DC-Link Voltage Balance Control of the Vienna Rectifier Linked With the Input Series Output Parallel LLC Converter)

  • 백승우;김학원;조관열
    • 전력전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.205-213
    • /
    • 2021
  • Due to the advantage of reducing the voltage applied to the switch semiconductor, the input series and output parallel combination is widely used in systems with high input voltage and large output current. On the other hand, the LLC converter is widely used as a high-efficiency power converter, and when connected by ISOP combination, there is a possibility that input voltage imbalance may occur due to a mismatch of passive devices. To avoid damaging the switching device, this study analyzed the DC-link voltage imbalance of a high-capacity supply using an ISOP LLC converter. In addition, the case where DC-link unbalance control was applied and the case not applied was analyzed respectively. Based on this analysis, an initial start-up algorithm was proposed to prevent input power semiconductor device damage due to DC-link over-voltage. The effectiveness of the proposed algorithm has been verified through simulations and experiments.