• Title/Summary/Keyword: Parallel operation

Search Result 1,244, Processing Time 0.038 seconds

A Parallel Control of Full-bridge Converter for Fuel Cell Generation (연료전지 발전용 풀-브리지 컨버터의 병렬제어)

  • Na, Jae-Hyeong;Jang, Su-Jin;Park, Chan-Heung;Won, Chung-Yuen;Lee, Byoung-Kuk
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.235-240
    • /
    • 2007
  • A large power fuel cell generation system needs a parallel operation of de-de boost converter. Therefore, this paper proposed parallel operation algorithms of de-de boost converters for the large scale fuel cell generation system of 250[kW] and the operating principle along with the control method in detail. This paper uses a maximum current sharing method as a parallel operation method and also the phase shift full bridge de-de converter as a de-de boost converter. Simulation and experimental results on two prototype converter modules of 500W show that the parallel operation method can be applied to the 250[kW] power converter.

  • PDF

The Study on Parallel operation of IGBT for the Medium SE the Large capacity Inverter ($\cdot$ 대용량 인버터용 IGBT 병렬 운전 연구)

  • Park G.T.;Yoon J.H.;Jung M.K.;Kim D.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.430-433
    • /
    • 2003
  • IGBTS are widely used for the industrial inverters in the mid power range at low voltage (440V$\~$660V) application. Advantageous features of the device are simple gate drive and high speed switching capability. Due to these advantages the application of IGBTS is enlarging into the high power application. However, to increase the power handling capacity at lower input voltage level, the current rating in each bridge arm must be enlarged. Therefore the parallel operation of IGBT devices is essentially needed. This paper describes the feasible parallel structures of the power circuit for the mid & the high power inverters and introduces the important design condition for the parallel operation of IGBT devices. To verify feasibility of the IGBT parallel operation, the feature of several IGBT devices (EUPEC, SEMIKRON's IGBT) are investigated and the power stacks are implemented and tested with these devices. The experimental results show the good characteristics for the parallel operation of IGBTS.

  • PDF

Development of 6kW ZVS Boost Converter by 4-Parallel Operation (4-병렬 제어 기법을 적용한 6kW 영전압 스위칭 승압형 컨버터 개발)

  • Rho, Min-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.86-92
    • /
    • 2009
  • This paper presents development of 6kw ZVS(Zero Voltage Switching) boost converter by 4-parallel operation. To realize a high capacity converter with 6 kw, 4-parallel operation of 1.5kW unit module is proposed in this paper. To meet high ratio input to output voltage, isolated type booster converter is designed. To achieve ZVS operation of 4-switches of full bridge and protect a voltage overshoot caused by switch turn-off, simple active-clamp circuit is applied to the primary side. For parallel operation of 4-modules, master-slave control method is proposed to achieve input current sharing of 4-unit converter modules accurately. For performance tests, simulation is carried out. Also, load and experimental tests of the developed booster converter, 230Vdc/6kW, are carried out under various conditions. For field tests, the developed converter is applied for boosting a battery power to high DC_link voltage for a VSI inverter which starts a micro-turbine(MT) installed in vehicle and it's performance is verified through high speed motoring a MT up to tens of thousands of rpm.

A Parallel Search Algorithm and Its Implementation for Digital k-Winners-Take-All Circuit

  • Yoon, Myungchul
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.4
    • /
    • pp.477-483
    • /
    • 2015
  • The k-Winners-Take-All (kWTA) is an operation to find the largest k (>1) inputs among N inputs. Parallel search algorithm of kWTA for digital inputs is not invented yet, so most of digital kWTA architectures have O(N) time complexity. A parallel search algorithm for digital kWTA operation and the circuits for its VLSI implementation are presented in this paper. The proposed kWTA architecture can compare all inputs simultaneously in parallel. The time complexity of the new architecture is O(logN), so that it is scalable to a large number of digital data. The high-speed kWTA operation and its O(logN) dependency of the new architecture are verified by simulations. It takes 290 ns in searching for 5 winners among 1024 of 32 bit data, which is more than thousands of times faster than existing digital kWTA circuits, as well as existing analog kWTA circuits.

Module UPS of multi-parallel operation for use in information & telecommunication systems (정보통신용 다병렬 운전의 모듈식 무정전전원장치)

  • Koo, Tae-Geun;Ryu, Ji-Su;Bae, Sang-Gyu;Park, Keun-Kap
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.390-393
    • /
    • 2007
  • The reliability as well as the power capability of the UPS system can be increased by replacing a single UPS unit with multiple small UPS units in parallel, resulting in a so-called module UPS. This module UPS system allows that a new module can be added or replaced while maintaining power to loads, which is a hot-swappable operation. In addition, it has desirable features such as ease of output power expandability, convenience of maintenance and repair, and high reliability. To realize the module UPS, load sharing without interconnection among parallel connecting modules as well as a small scale and lightweight topology is necessary. The frequency and voltage droop method is applied to parallel operation control to achieve load sharing. 5kVA modules are designed and implemented to confirm the effectiveness of the proposed approaches. Experimental results show that the module UPS system has a high power factor, a low distortion of output voltage and input current, hot-swappable operations and good load sharing characteristics.

  • PDF

Parallel Operation Systems of Z-Source Inverters for Fuel Cell Systems (연료 전지 시스템을 위한 Z-소스 인버터고 구성된 병렬 운전 시스템)

  • Moon Hyun-Wook;Jeong Eun-Jin;Kim Yoon-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.443-449
    • /
    • 2005
  • In this paper, parallel operation systems with Z-source Inverters for the fuel cell systems are discussed. The carrier phase shifted SPWM(Sinusoidal Pulse Width Modulation) has an advantage in reducing harmonics of output current. However when this technique applies in parallel operation of Z-source inverters, it additionally produces circulating currents. The circulating current is analyzed and a method to prevent the circulating current is applied to the parallel operation systems of Z-source inverters. To maintain high performance with reduced circulating current in inverter output and low harmonic components in load current, circulating current reactors are used. The proposed approach is verified through simulation and experiment.

Wireless Parallel Operation Control of N+l Redundant UPS System (독립제어구조를 갖는 N+1 모듈형 UPS 시스템의 병렬운전)

  • 조준석;한재원;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.499-508
    • /
    • 2002
  • In this paper, a novel wireless parallel operation algorithm of N+l redundant UPS system with no control interconnections for load-sharing is presented. The proposed control system eliminates the sensing noise and interconnections interference of conventional parallel operation system. To reduce a reactive power deviation in wireless control method, this technique automatically compensates for inverter parameter variation and line impedance imbalances with wireless auto-tuning method. In addition, to increase reliability on transient characteristics of parallel operation, a virtual injected impedance is adopted to eliminate a circulation current among inverter modules. Simulation results are provided in this paper to prove the proposed novel wireless algorithm.

A Feasibility Design of PEMFC Parallel Operation for a Fuel Cell Generation System

  • Kang, Hyun-Soo;Choe, Gyu-Yeong;Lee, Byoung-Kuk;Hur, Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.408-421
    • /
    • 2008
  • In this paper, the parallel operation for a FC generation system is introduced and designed in order to increase the capacity for the distributed generation of a proton exchange membrane fuel cell (PEMFC) system. The equipment is the type that is used by parallel operated PEMFC generation systems which have two PEMFC systems, two dc/dc boost converters with shared dc link, and a grid-connected dc/ac inverter for embedded generation. The system requirement for the purpose of parallel operated generation using PEMFC system is also described. Aspects related to the mechanical (MBOP) and electrical (EBOP) component, size, and system complexity of the distributed generation system, it is explained in order to design an optimal distributed generation system using PEMFC. The optimal controller design for the parallel operation of the converter is suggested and informative simulations and experimental results are provided.

A Study on the Compensation Method for Unbalance Parallel Operation of Parallel Connected Thyristor Dual Converters using Circulating Current (순환 전류를 이용한 병렬 연결된 사이리스터 듀얼 컨버터의 불균형 병렬 운전 보상 기법에 관한 연구)

  • Kim, Sung-An;Han, Sung-Woo;Moon, Dong-Ok;Kim, Young-Woo;Lee, Chang-Hee;Cho, Yun-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.473-480
    • /
    • 2016
  • This study proposes a performance improvement for parallel-connected thyristor dual converters using a circulating current with an unbalanced parallel operation compensator. The proposed control method determines a variable reference value for the voltage PI controller according to voltage error at firing angle control applied to a difference current control. This method uses circulating current control to maintain a stable voltage and excellent current response during parallel operation. The effectiveness of the proposed control is verified with a simulation and an experiment based on the comparison of the performance of the proposed control method with other conventional methods.

New Communication Method using Pulse Width Information for Power Converter Parallel Operation (전력변환기 병렬운전을 위한 펄스폭 정보를 이용한 새로운 통신방식)

  • Dong-Whan Kim;Seong-Cheol Choi;Tuan-Vu Le;Sung-Jun Park;Seong-Mi Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1097-1108
    • /
    • 2023
  • Recently, demand for technology for energy economy and stable supply is increasing due to the increase in power demand of loads. The amount of DC power generation using new and renewable energy is noticeably increasing, and the use of DC power supplies is also increasing due to the increase in electric vehicles and digital loads. During parallel operation to increase the capacity of the power converter, the module bus method or the method using Can communication and serial communication has significant difficulties in smooth operation due to communication time delay for information sharing. Synchronization of information sharing of each power converter is essential for smooth parallel operation, and minimization of communication time delay is urgently needed as a way to overcome this problem. In this paper, a new communication method using pulse width information is proposed as a communication method specialized for parallel operation of power converters to compensate for the disadvantage of communication transmission delay in the existing system. The proposed communication method has the advantage of being easily implemented using the PWM and Capture function of the microcomputer. In addition, the DC/DC converter for DC distribution was verified through simulation and experiment, and it has the advantage of easy capacity expansion when applied to parallel operation of various types of power converters as well as DC/DC converters.