• 제목/요약/키워드: Parallel load control

검색결과 287건 처리시간 0.027초

단상 인버터 시스템에서 순환 전류 제어 기법에 관한 연구 (The Study of the Circulation Current Control Scheme on Single Phase Inverter System)

  • 이우철
    • 조명전기설비학회논문지
    • /
    • 제28권2호
    • /
    • pp.60-69
    • /
    • 2014
  • This paper proposed the circulation current control scheme in the single phase inverter system. The load experiment of the power conversion system including the UPS usually uses the passive components such as resistors and inductors. Therefore, the energy consumption is serious problem. In addition, the system is out of order when it is installed in the local area, and the load experiment can not perform adequately after troubleshooting, because there is no the load equipment, and the power capacity is not enough in the local area. The paper does the research on the circulation current control scheme, it does not need the load equipment, and the load current can reuse as the input current of the equipment. Instead of the conventional method the voltage-voltage and voltage-current control scheme introduced the parallel converter concept is newly proposed, and the validity of the proposed control scheme is investigated by both simulation and experimental results.

독립운전 모드에서 가상 인덕터를 활용한 대용량 인버터 병렬운전을 위한 드룹제어 (Droop Method for High-Capacity Parallel Inverters in Islanded Mode Using Virtual Inductor)

  • 정교선;임경배;김동환;최재호
    • 전력전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.81-90
    • /
    • 2015
  • This paper investigates the droop control-based real and reactive power load sharing with a virtual inductor when the line impedance between inverter and Point of Common Coupling (PCC) is partly and unequally resistive in high-capacity systems. In this paper, the virtual inductor method is applied to parallel inverter systems with resistive and inductive line impedance. Reactive power sharing error has been improved by applying droop control after considering each line impedance voltage drop. However, in high capacity parallel systems with large output current, the reference output voltage, which is the output of droop controller, becomes lower than the rated value because of the high voltage drop from virtual inductance. Hence, line impedance voltage drop has been added to the droop equation so that parallel inverters operate within the range of rated output voltage. Additionally, the virtual inductor value has been selected via small signal modeling to analyze stability in transient conditions. Finally, the proposed droop method has been verified by MATLAB and PSIM simulation.

A Study on New PV Tracking System Including Load Dispersion

  • Lee, Sang-Hun;Song, Hyun-Jig;Park, Chan-Gyu;Song, Sung-Geon
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권4호
    • /
    • pp.472-480
    • /
    • 2014
  • The In solar power system, the height and azimuth of the sun are important parameters which control generated power magnitude. The tracking method that controls the daily generation magnitude according to latitude and longitude using the two axles is often used in the existing sunlight tracking system today. In this two-axle PV track control system, the self-load is concentrated on one FRAME. It is influenced of the regular load, snow load and the wind load, etc. It is difficult to set up the system in the conventional building. This research is a development about the small-scale economy track device of independent load-dispersing solar generation system. The position tracking algorithm is through new coordinates transformation calculating the height and azimuth of the sun.

유압모터-부하계의 3D CAD 모델링 및 적응제어 (3D CAD Modeling of a Hydraulic Motor-Load System and Adaptive Control)

  • 조승호
    • 유공압시스템학회논문집
    • /
    • 제8권2호
    • /
    • pp.23-28
    • /
    • 2011
  • This paper investigates the motion control of a hydraulic motor-load system using the Simple Adaptive Control (SAC) method. The plant transfer function has been modelled mathematically. The open-loop responses have been obtained experimentally in order to identify the design parameters of transfer function. The hydraulic motor-load system has been modelled using the 3D CAD and imbedded in the hydraulic circuit simulation program to verify the overall performance. The experimental results confirm that the SAC method gives a good tracking performance compared to the PID control.

Harmonics Reduction in Load control and Management system

  • Thueksathit, W.;Tipsuwanporn, V.;Hemawanit, P.;Gulpanich, S.;Srisuwan, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2283-2286
    • /
    • 2003
  • This paper presents conservation of electrical energy in building with harmonics analysis and compensation which occur in electrical system. We use load controlling and management system in order to adjust load factor of system.The maximum demand limiting and controlling are used ,then the system can acquire the prediction and compare it to the maximum demand set point.The electrical signal analysis based on FFT technique. The harmonics are compensated by using harmonic filters.This system consists computer which works as controller, processor , analysis and database unit together with digital power meter in form of multidrop network through serial communication via RS-485.The load control system uses PLC to control load via serial communication RS-485. The A/D converter is used for sampling the electrical signals via parallel port of computer.The harmonic filters are controlled by a computer.The data of measurement such as voltage, current, power, power factor, total harmonic distortion, energy, etc., can be saved as database and analysis. The load factor is adjusted by limiting and controlling maximum demand. The load factor adjustment can reduce the cost of electric consumption and energy generation together with harmonics compensation in order to increase high efficiency of electrical system.

  • PDF

직렬 능동 보상기를 이용한 Line-Interactive UPS의 새로운 제어 기법 (A New Control Scheme of the Line-Interactive UPS Using the Series Active Compensator)

  • 장훈;이우철;현동석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권8호
    • /
    • pp.405-412
    • /
    • 2003
  • This paper presents a three-phase Line-Interactive uninterruptible power supply (UPS) system with series-parallel active power-line conditioning capabilities, using synchronous reference frame (SRF) based controller, which allows an effective power factor correction, source harmonic voltage compensation, load harmonic current suppression, and output voltage regulation. The three-phase UPS system consists of two active power compensator topologies. One is a series active compensator, which works as a voltage source in phase with the source voltage to have the sinusoidal source current and high power factor under the deviation and distortion of the source voltage. The other is a parallel active compensator which works as a conventional sinusoidal voltage source in phase with the source voltage, providing to the load a regulated and sinusoidal voltage with low THD (total harmonic distortion). The control algorithm using SRF method and the active power flow through the Line-interactive UPS systems are described and studied. The simulation and experimental results are depicted in this paper to show the effect of the proposed algorithm.

이중구조 오리피스 팽창장치의 유동특성에 관한 실험적 연구 (An Experimental Study on Flow Characteristics for Dual-Structured Orifice)

  • 곽경민;김하덕;이중형;배철호;김종엽
    • 설비공학논문집
    • /
    • 제14권12호
    • /
    • pp.1039-1046
    • /
    • 2002
  • To investigate the characteristics of orifice as an expansion devices, the experimental apparatus was made and experiments are being peformed using R22 and R290. The main idea of this control method of refrigerant flow rate with coupled orifices is to control the ON/OFF state of T and Ball type orifice corresponding to the subdivided region of thermal load. When system requires minimum thermal load, both T and Ball type orifices are closed, but refrigerant can flow through small hole of T type orifice. In regular thermal load, when ball type orifice is closed, T type orifice is opened and mass flow rate increase more than OFF state of T type orifice, due to large diameter. In maximum thermal load, both T and Ball type orifices are open and the much refrigerant can flow. The flow characteristics on T type orifice and parallel-combined orifice are obtained in the subdivided region of thermal load.

A Method to Control Unstable Hopf Bifurcation in Power Systems

  • Lee, Sang-Ho;Park, Jong-Keun
    • KIEE International Transactions on Power Engineering
    • /
    • 제4A권1호
    • /
    • pp.1-5
    • /
    • 2004
  • The model of a power system with load dynamics is studied by investigating qualitative changes in its behavior as the reactive power demand at a load bus is increased. The load is created using induction motors parallel with the constant power and constant impedance load. As the load increases, the system experiences various bifurcations such as sub critical and supercritical Hopf, period-doubling and saddle-node bifurcation. The latter may lead the system to voltage collapse. A nonlinear controller is used to control the subcritical Hopf bifurcation and hence mitigate voltage collapse. It is applied to the KEPCO (Korean Electric Power Company) system to demonstrate its validity.

Fuzzy Power Factor Control Systems

  • Cho, Seong-Won;Kim, Jae-Min;Jung, Jae-Yoon;Lim, Cheol-Su
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권1호
    • /
    • pp.45-49
    • /
    • 2004
  • A method for obtaining the power energy with high quality is to keep the power factor for a load as close to unity as feasible. In this paper, we present a new method to improve the power factor for a load. The proposed method uses fuzzy control techniques in order to determine how many parallel capacitors are to be connected to the load for the correction of the power factor.

이중 변환 UPS의 병렬 운전 시 외란 저감 성능 향상을 위한 정지 좌표계 상의 전향 보상 기법 (Feed-Forward Compensation Technique in Stationary Reference Frame for the Enhanced Disturbance Rejection Performance in Parallel Operation of Double-Conversion UPSs)

  • 류효준;윤영두;모재성;최승철;우태겸
    • 전력전자학회논문지
    • /
    • 제27권5호
    • /
    • pp.367-375
    • /
    • 2022
  • Generally, a proportional-resonant controller is used to eliminate steady-state errors during the voltage-current control of a double-conversion uninterruptible power supply (UPS) in a stationary reference frame. Additionally, the feed-forward control compensating for the load current, which can be considered a disturbance of the voltage controller, can be used to improve the disturbance rejection performance. However, during the parallel operation of UPSs, circulating current can occur between UPS modules when performing both feed-forward control and droop control because feed-forward control reduces the circulating current impedance. This study proposes a feed-forward compensation technique that considers the impedance of circulating current. An additional feed-forward compensation technique is developed to enhance the disturbance rejection performance. The validity of the proposed feed-forward compensation technique is verified by the experiment results of the parallel operation of a 500 W double-conversion UPS module.