• Title/Summary/Keyword: Parallel flow channel

Search Result 133, Processing Time 0.04 seconds

Numerical Study of Heat and Mass Transfer Characteristics in Microchannel Steam Methane Reforming Reactor (마이크로채널 메탄 수증기 개질 반응기의 열 및 물질 전달 특성에 관한 수치해석 연구)

  • Jeon, Seung-Won;Lee, Kyu-Jung;Cho, Yeon-Hwa;Moon, Dong-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.885-894
    • /
    • 2012
  • A numerical study of a microchannel steam methane reforming reactor has been performed to understand the characteristics of heat and mass transfer. The integration of Rh-catalyzed steam methane reforming and Pt-catalyzed methane combustion has been simulated. The reaction rates for chemical reactions have been incorporated into the simulation. This study investigated the effect of contact time, flow pattern (parallel or counter), and channel size on the reforming performance and temperature distribution. The parallel and counter flow have opposite temperature distribution, and they show a different type of reaction rate and species mole fraction. As the contact time decreases and channel size increases, mass transfer between the catalyst layer and the flow is limited, and the reforming performance is decreased.

A Comparative Analysis of I-V Characteristics in a single Channel Superconducting Flux Flow Transistor (단일채널 고온초전도 자속흐름 트랜지스터의 I-V 특성 비교분석)

  • Ko, Seok-Cheol;Kang, Hyeong-Gon;Lim, Sung-Hun;Choi, Myong-Ho;Lee, Jong-Hwa;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.107-110
    • /
    • 2003
  • We have proposed a model to describe the current-voltage characteristics of fabricated devices using the Biot-Savart's law in order to develop superconducting flux flow transistors, The measured and calculated values, including induced voltage, transresistance and current gain were investigated in relation to the parallel flow of the vortices in a single microbridge. The predictions agreed very well with measured results.

  • PDF

Optimizing the Manifold Design of a Fuel Cell Stack for Uniform Distribution of Reactant Gases within Fuel Cell Channels (연료전지 채널 내 균일한 유량분배를 위한 연료전지 스택의 매니폴드 디자인 최적화 연구)

  • Jo, A-Rae;Kang, Kyung-Mun;Oh, Sung-Jin;Ju, Hyun-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.11-19
    • /
    • 2012
  • The main function of fuel cell manifold is to render reactants distribution as uniform as possible into a fuel cell stack. The purpose of this study is to numerically investigate the effects of stack manifold design on reactants distribution within a fuel cell stack. Four manifold designs with different manifold entrance shapes (expansion or diffuser) and different values of the extra width between the cell outer channel and manifold side wall are considered and applied to the fuel cell stack consisting of 50 cells. Since the fuel cell stack geometry involves several millions of grid points for numerical calculations, a parallel computing methodology is employed to substantially reduce the computational time and overcome the memory requirement. The numerical simulations are carried out and calculated results clearly demonstrate that both the manifold entrance shape and extra width have a substantial influence on manifold performance, controlling the degree of flow separation and entrance length for fully developed flow in the manifold channel. Finally, we suggest the optimum design of fuel cell manifold based on the simulation results.

Volumetric Blood Velocity Measurement on Multigate Pulsed Doppler System based on the Single Channel RF Sampling using the Optimized Sampling Factor (최적화된 샘플링 인수를 갖는 단일 채널 RF 샘플링 방식의 다중점 펄스 도플러 시스템을 사용한 혈류 속도분포 측정)

  • 임춘성;민경선
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.143-152
    • /
    • 1998
  • In this paper, we present the performances of a Doppler system using single channel RF(Radio Frequency) sampling. This technique consists of undersampling the ultrasonic blood backscattered RF signal on a single channel. Conventional undersampling method in Doppler imaging system have to use a minimum of two identical parallel demodulation channels to reconstruct the multigate analytic Doppler signal. However, this system suffers from hardware complexity and problem of unbalance(gain and phase) between the channels. In order to reduce these problems, we have realized a multigate pulsed Doppler system using undersampling on a single channel, It requires sampling frequency at $4f_o$(where $f_o$ is the center frequency of the transducer) and 12bits A/D converter. The proposed " single-Channel RF Sampling" method aims to decrease the required sampling frequency proportionally to $4f_o$/(2k+1). To show the influence of the factor k on the measurements, we have compared the velocity profiles obtained in vitro and in vivo for different intersequence delays time (k=0 to 10). We have used a 4MHz center frequency transducer and a Phantom Doppler system with a laminar stationary flow. The axial and volumetric velocity profiles in the vessel have been computed according to factor k and have been compared. The influence of the angle between the ultrasonic beam and the flow axis direction, and the fluid viscosity on the velocity profiles obtained for different values of k factor is presented. For experiment in vivo on the carotid, we have used a data acquisition system with a sampling frequency of 20MHz and a dynamic range of 12bits. We have compared the axial velocity profiles in systole and diastole phase obtained for single channel RF sampling factor.ng factor.

  • PDF

The Effect of Suction and Injection on Unsteady Flow of a Dusty Conducting Fluid in Rectangular Channel

  • Attia Hazem Ali
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1148-1157
    • /
    • 2005
  • In the present study, the unsteady Hartmann flow of a dusty viscous incompressible electrically conducting fluid under the influence of an exponentially decreasing pressure gradient is studied without neglecting the ion slip. The parallel plates are assumed to be porous and subjected to a uniform suction from above and injection from below. The fluid is acted upon by an external uniform magnetic field which is applied perpendicular to the plates. An analytical solution for the governing equations of motion is obtained to yield the velocity distributions for both the fluid and dust particles.

Development of design technique for automotive condenser (자동차용 에어컨 응축기의 설계기술 개발)

  • Cho, Y.D.;Han, C.S.;Yoo, S.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.10-17
    • /
    • 1999
  • The present work presents condensation heat transfer and pressure drop data for the flow of R-12 in flat extruded aluminum tubes with small hydraulic diameters. The tube outside dimensions are $18mm(width){\times}1.7mm(height)$. Three types of internal geometry with the same outside dimensions are tested : sample 1 (7 tube holes), sample 2 (13 tube holes) and sample 3 (7 tube holes, micro-fin). The overall heat transfer coefficient is obtained for air-to-refrigerant heat transfer, and the Wilson plot method is used to determine the heat transfer coefficient for refrigerant flow. The sample 2 and sample 3 show significantly higher performance than sample 1. The heat transfer rates for the sample 2 and sample 3 are 9% and 12% higher, respectively, than sample 1. The friction factors for the sample 2 and sample 3 are 11.9% and 2.4% higher, respectively, than sample 1.

  • PDF

Cooling characteristics of a Liquid cooler Using Thermoeletric Module (열전소자를 이용한 액체 냉각기의 냉각열전달 특성)

  • Park, Min-Young;Lee, Geun-Sik
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.197-202
    • /
    • 2007
  • In this study, the cooling characteristics of a liquid cooler using thermoelectric module was experimentally investigated. The experiment was conducted for various inner structures of liquid cooler (4 cases), hot fluid flow rates (0.15-0.25 L/min), number of T.E module (2, 4, 6 set), and the cooling water flow rates (200-600 cc/min) for both parallel and counter flow types. Among the results, better cooling performance geometry was selected. And experiment was also carried out to examine further enhancement of cooling performance by inserting coils (pitches: 0.2, 3, 6 mm) into the hot-fluid channel. Present results showed that the short serpentine type(case2) indicated the best cooling performance. In the case of coil pitch of 3 mm, the best cooling performance was shown, more than 10% increase of the inlet and outlet temperature difference, compared with the case of the cooler without coil. Consequently, the inserted coil pitch should be properly selected to improve cooling performance.

  • PDF

Thermo-Fluid Simulation for Flow Channel Design of 7kW High-Voltage Heater for Electric Vehicles (전기차용 7kW급 고전압 히터 유로 형상 설계를 위한 열유동 시뮬레이션)

  • Son, Kwon Joong
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.191-196
    • /
    • 2022
  • Unlike an international combustion engine car, a battery-powered electric vehicle requires an additional heat source for its heating system. A high-voltage coolant heater has the advantages of high efficiency and a wide operating temperature range. In its development, the geometry design of the coolant flow path is essential. This paper presents the thermal flow simulations of a 7kW high-voltage heater with symmetric serpentine flow channels arranged parallelly. The heater performance was evaluated from the simulation results in terms of the pressure and temperature differences and the flow uniformity. The proposed design showed a greater flow resistance and similar heat exchanging capability than the existing parallel serpentine design. It has the advantage of a relatively wide low-temperature surface area, where the control circuit board susceptible to high temperatures can be located.

Heat/Mass Transfer and Friction Characteristic in a Square Duct with Various Discrete Ribs -In-Lined Gap Arrangement Ribs- (덕트내 요철의 단락위치 변화에 따른 열/물질전달 및 압력강하 특성 - 정렬 단락배열 요철 -)

  • Lee, Sei-Young;Choi, Chung;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1640-1649
    • /
    • 2001
  • The present study investigates the effects of various rib arrangements on heat/mass transfer in the cooling passage of gas turbine blades. A complex flow structure occurs in the cooling passage with rib turbulators which promote heat transfer on the wall. It is important to increase not only the heat transfer rates but also the uniformity of heat transfer in the cooling passage. A numerical computation is performed using a commercial code to calculate the flow structures and experiments are conducted to measure heat/mass transfer coefficients using a naphthalene sublimation technique. A square channel (50 mm $\times$ 50 mm) with rectangular ribs (4 mm $\times$ 5 mm) is used fur the stationary duct test. The experiments focus on the effects of rib arrangements and gap positions in the discrete ribs on the heat/mass transfer on the duct wall. The rib angle of attack is 60°and the rib-to-rib pitch is 32 mm, that is 8 times of the rib height. With the inclined rib angle of attack (60°), the parallel rib arrangements make a pair of counter rotating secondary flows in the cross section, but the cross rib arrangements make a single large secondary flow including a small secondary vortex. These secondary flow patterns affect significantly the heat/mass transfer on the ribbed wall. The heat/mass transfer in the parallel arrangements is 1.5 ∼2 times higher than that in the cross arrangements. However, the shifted rib arrangements change little the heat/mass transfer from the inline rib arrangements. The gap position in the discrete rib affects significantly the heat/mass transfer because a strong flow acceleration occurs locally through the gap.