DOI QR코드

DOI QR Code

Thermo-Fluid Simulation for Flow Channel Design of 7kW High-Voltage Heater for Electric Vehicles

전기차용 7kW급 고전압 히터 유로 형상 설계를 위한 열유동 시뮬레이션

  • Son, Kwon Joong (Department of Mechanical and Design Engineering, Hongik University)
  • 손권중 (홍익대학교 기계정보공학과)
  • Received : 2021.12.23
  • Accepted : 2022.03.20
  • Published : 2022.03.28

Abstract

Unlike an international combustion engine car, a battery-powered electric vehicle requires an additional heat source for its heating system. A high-voltage coolant heater has the advantages of high efficiency and a wide operating temperature range. In its development, the geometry design of the coolant flow path is essential. This paper presents the thermal flow simulations of a 7kW high-voltage heater with symmetric serpentine flow channels arranged parallelly. The heater performance was evaluated from the simulation results in terms of the pressure and temperature differences and the flow uniformity. The proposed design showed a greater flow resistance and similar heat exchanging capability than the existing parallel serpentine design. It has the advantage of a relatively wide low-temperature surface area, where the control circuit board susceptible to high temperatures can be located.

내연기관 자동차 히터는 연소과정 중에 발생하는 엔진 열을 이용하므로 열원이 추가로 필요치 않지만, 배터리로부터 동력원을 얻는 전기자동차용 히터는 별도의 전열 장치가 요구된다. 지금까지 개발된 전기차용 히터 중에서 냉매를 이용하는 고전압 히터는 효율이 높고 작동 온도 범위가 넓은 장점이 있다. 고전압 히터 내부의 냉각수 유로의 형상은 열교환 성능을 크게 좌우하므로 히터 개발 시 유로 설계는 기술적으로 매우 중요하다. 본 논문에서는 대칭형 서펜타인 유로를 갖는 7kW급 고전압 히터의 유로 형상 설계를 위해 고전압 열유동 시뮬레이션을 수행하였다. 해석결과로부터 입출구간 차압과 차온 및 유로에서의 유동 균일도를 계산하여 히터의 성능을 평가하였다. 도출된 대칭형 서펜타인 유로 설계안은 기존 평행 서펜타인 비해 차압은 높지만, 열교환 성능은 비등하며 저온부가 비교적 넓게 존재하여 제어 회로의 설치 공간으로 활용할 수 있다는 장점이 있다.

Keywords

Acknowledgement

This work work was supported by Korea Institute for Advancement of Technology(KIAT) grant funded by the Korea Government(MOTIE) (P0017526, 2021년 지역대표 중견기업 육성사업, 주관기관: (주)유라테크).

References

  1. Z. Zhang, J. Wang, X. Feng, L. Chang, Y. Chen & X. Wang. (2018). The Solutions to Electric Vehicle Air Conditioning Systems: A Review. ATZ Worldwide, 115(6), 16-19. DOI : 10.1016/j.rser.2018.04.005
  2. M. H. Park & S. C. Kim. (2017). Heating Performance Characteristics of High-Voltage PTC Heater for an Electric Vehicle. Energies, 10(10), 1494. DOI : 10.3390/en10101494
  3. C. Cap & C. Hainzlmaier1. (2013). Layer Heater for Electric Vehicles. ATZ Worldwide, 115(6), 16-19. DOI : 10.1007/s38311-013-0068-9
  4. F. Dong, Z. Wang, Y. Feng & J. Ni. (2021). Numerical Study on Flow and Heat Transfer Performance of Serpentine Parallel Flow Channels in a High-Voltage Heater System. Thermal Science, 168-168. DOI : 10.2298/TSCI200926168D
  5. F. Dong, Y. Feng, Z. Wang & J. Ni. (2019). Effects on Thermal Performance Enhancement of Pin-Fin Structures for Insulated Gate Bipolar Transistor (IGBT) Cooling in High Voltage Heater System. International Journal of Thermal Sciences, 146, 106106. DOI : 10.1016/j.ijthermalsci.2019.106106
  6. W. Zhang, P. Hu, X. Lai & L. Peng. (2009). Analysis and Optimization of Flow Distribution in Parallel-Channel Configurations for Proton Exchange Membrane Fuel Cells. Journal of Power Sources, 194(2), 931-940. DOI : 10.1016/j.jpowsour.2009.05.033
  7. A. F. Al-Neama, N. Kapur, J. Summers & H. M. Thompson. (2017). An Experimental and Numerical Investigation of the Use of Liquid Flow in Serpentine Microchannels for Microelectronics Cooling. Applied Thermal Engineering, 116, 709-723. DOI : 10.1016/j.applthermaleng.2017.02.001
  8. K. H. Cho, H. S. Ahn & M. H. Kim. (2011). Optimizing the Configurations of Cooling Channels with Low Flow Resistance and Thermal Resistance. Transactions of the Korean Society of Mechanical Engineers B, 35(1), 9-15. DOI : 10.3795/KSME-B.2011.35.1.009
  9. K. J. Son. (2020). Performance Evaluation of Multi-Degree-of-Freedom Robotic Mixer using Discrete Element Mixing Simulations. Journal of the Korea Convergence Society, 11(10), 219-224. DOI : 10.15207/JKCS.2020.11.10.219
  10. K. J. Son. (2021). Numerical Simulation of Productivity of Metal Powder Spray Granulation Process Using Discrete Element Method. Journal of the Korea Convergence Society, 12(1), 185-191. DOI : 10.15207/JKCS.2021.12.1.185
  11. T. Kajishima & K. Taira. (2017). Computational Fluid Dynamics, Cham : Springer. DOI : 10.1007/978-3-319-45304-0
  12. L. Rostami, P. M. G. Nejad & A. Vatani. (2016). A Numerical Investigation of Serpentine Flow Channel with Different Bend Sizes in Polymer Electrolyte Membrane Fuel Cells. Energy, 97, 400-410. DOI : 10.1016/j.energy.2015.10.132
  13. K. K. Choi & J. U. Cho. (2020). A Convergent Investigation on the thermal and stress analyses of CPU Cooler. Journal of the Korea Convergence Society, 11(8), 153-158. DOI : 10.15207/JKCS.2020.11.8.153
  14. K. K. Choi & J. U. Cho. (2020). A Convergent Investigation on the Thermal Analysis due to Heat Generation of Laptop. Journal of the Korea Convergence Society, 11(11), 189-194. DOI : 10.15207/JKCS.2020.11.11.189
  15. X. Cao, H. Liu, X. Shao, H. Shen & G. Xie. (2020). Thermal Performance of Double Serpentine Minichannel Heat Sinks: Effects of Inlet-Outlet Arrangements and Through-Holes. International Journal of Heat and Mass Transfer, 153, 119575. DOI : 10.1016/j.ijheatmasstransfer.2020.119575