• Title/Summary/Keyword: Parallel Rendering

Search Result 69, Processing Time 0.023 seconds

David II: A new architecture for parallel rendering processors with effective memory system (David II: 효과적인 메모리 시스템을 가지는 병렬 렌더링 프로세서)

  • Lee, Kil-Whan;Park, Woo-Chan;Kim, Il-San;Han, Tack-Don
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.1655-1658
    • /
    • 2004
  • Current rendering processors are organized mainly to process a triangle as fast as possible and recently parallel 3D rendering processors, which can process multiple triangles in parallel with multiple rasterizers, begin to appear. For high performance in processing triangles, it is desirable for each rasterizer have its own local pixel cache. However, the consistency problem may occur in accessing the data at the same address simultaneously by more than one rasterizer. In this paper, we propose a parallel rendering processor architecture, called DAVID II, resolving such consistency problem effectively. Moreover, the proposed architecture reduces the latency due to a pixel cache miss significantly. The experimental results show that DAVID II achieves almost linear speedup at best case even in sixteen rasterizers.

  • PDF

Development of Mobile Volume Visualization System (모바일 볼륨 가시화 시스템 개발)

  • Park, Sang-Hun;Kim, Won-Tae;Ihm, In-Sung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.5
    • /
    • pp.286-299
    • /
    • 2006
  • Due to the continuing technical progress in the capabilities of modeling, simulation, and sensor devices, huge volume data with very high resolution are common. In scientific visualization, various interactive real-time techniques on high performance parallel computers to effectively render such large scale volume data sets have been proposed. In this paper, we present a mobile volume visualization system that consists of mobile clients, gateways, and parallel rendering servers. The mobile clients allow to explore the regions of interests adaptively in higher resolution level as well as specify rendering / viewing parameters interactively which are sent to parallel rendering server. The gateways play a role in managing requests / responses between mobile clients and parallel rendering servers for stable services. The parallel rendering servers visualize the specified sub-volume with rendering contexts from clients and then transfer the high quality final images back. This proposed system lets multi-users with PDA simultaneously share commonly interesting parts of huge volume, rendering contexts, and final images through CSCW(Computer Supported Cooperative Work) mode.

A architecture for parallel rendering processor with by effective memory organization (효과적인 메모리 구조를 갖는 병렬 렌더링 프로세서 구조)

  • Kim, Kyung-Su;Yoon, Duk-Ki;Kim, Il-San;Park, Woo-Chan
    • Journal of Korea Game Society
    • /
    • v.5 no.3
    • /
    • pp.39-47
    • /
    • 2005
  • Current rendering processors are organized mainly to process a triangle as fast as possible and recently parallel 3D rendering processors, which can process multiple triangles in parallel with multiple rasterizers, begin to appear. For high performance in processing triangles, it is desirable for each rasterizer have its own local pixel cache. However, the consistency problem may occur in accessing the data at the same address simulaneously by more than one rasterizer. In this paper, we propose a parallel rendering processor architecture resolving such consistency problem effectively. Moreover, the proposed architecture reduces the latency due to a pixel cache miss significantly. The experimental results show that proposed architecture achieves almost linear speedup at best case even in sixteen rasterizer

  • PDF

Design of a Parallel Rendering Processor Architecture with Effective Memory System (효과적인 메모리 구조를 갖는 병렬 렌더링 프로세서 설계)

  • Park Woo-Chan;Yoon Duk-Ki;Kim Kyoung-Su
    • The KIPS Transactions:PartA
    • /
    • v.13A no.4 s.101
    • /
    • pp.305-316
    • /
    • 2006
  • Current rendering processors are organized mainly to process a triangle as fast as possible and recently parallel 3D rendering processors, which can process multiple triangles in parallel with multiple rasterizers, begin to appear. For high performance in processing triangles, it is desirable for each rasterizer have its own local pixel cache. However, the consistency problem may occur in accessing the data at the same address simultaneously by more than one rasterizer. In this paper, we propose a parallel rendering processor architecture resolving such consistency problem effectively. Moreover, the proposed architecture reduces the latency due to a pixel cache miss significantly. For the above two goals, effective memory organizations including a new pixel cache architecture are presented. The experimental results show that the proposed architecture achieves almost linear speedup at best case even in sixteen rasterizers.

Parallel Pipelined volume rendering of artifical heart using WISE on Grid (Grid workflow system을 이용한 인공 심장 Parallel pipelined volume render ing system)

  • 박진성;류소현;권용원;정창성
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.67-69
    • /
    • 2004
  • 본 논문은 Grid상의 workflow 시스템인 Workflow based Grid Portal for PSE(이하 WISE)를 이용한 인공 심장의 3차원 병렬 volume rendering system 디자인과 구현에 대하여 기술한다. Grid는 전 세계에 분산되어 있는 고성능, 대용량 자원들을 고속 네트워크로 연동하여 사용할 수 있게 하는 환경이며, WISE 시스템은 workflow 개념을 도입하여, 이런 자원들의 효율적이고 편리하게 관리해주고 아울러 여러 가지 패턴을 이용해 프로그래밍 할 수 있게 해주는 middleware이다. 본 논문에서는 Grid 상에서 WISE system에서 제공하는 프로그래밍 패턴을 이용하여 구조화되어 있지 않은 인공심장 데이터를 병렬 processing Pipeline 모델을 바탕으로 효율적인 parallel 3차원 가시화를 하기 위한 parallel pipelined volume rendering system을 구현하였다.

  • PDF

Linux Cluster-based Parallel File System for Parallel Volume Rendering (병렬볼륨렌더링을 위한 리눅스 클러스터 기반 병렬화일시스템)

  • 류영준;정갑주
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04a
    • /
    • pp.91-93
    • /
    • 2001
  • 볼륨 렌더링(Volume Rendering)은 과학, 의학, 공학 등의 분야에서 3차원 볼륨 데이터(Volume Date)를 효과적으로 시각화(Visualization)하는 목적으로 널리 사용되고 있으며 고화질 영상 요구로 인해 3차원 볼륨 데이터의 크기는 점차 대용량화되어 가는 추세이다. 이러한 대용량 데이터의 고성능 처리를 위해서는 병렬입출력이 필수적이다. 본 논문에서는 병렬볼륨 렌더링에 최적화된 병렬화일시스템 PBS(Parallel Block Server)을 제안한다. PBS는 고성능 입출력 제공을 위해서 데이터입출력에 대한 응용 프로그램의 집적 통제를 위한 다양한 기능을 제공하도록 설계되어 있다. 이러한 직접통제의 단점인 복잡한 인터페이스 문제를 해결하기 위해서 볼륨 렌더링에 최적화된 데이터 입출력 전략을 자동화시킨 PBS 기반 라이브러리 VRPIO(Volume Rendering Parallel Input Output)를 제공한다.

Hardware-Accelerated Multipipe Parallel Rendering of Large Data Streams

  • Park, Sanghun;Park, Sangmin;Bajaj, Chandrajit;Ihm, Insung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.7 no.2
    • /
    • pp.21-28
    • /
    • 2001
  • As a result of the recent explosive growth of scientific data, extremely large volume datasets have become increasingly commonplace. While several texture-based volume rendering algorithms have been proposed, most of them focused on volumes smaller than the hardware's available texture memory. This paper presents a new parallel volume rendering scheme for very large static and time-varying data on a multipipe system architecture. Our scheme subdivides large volumes dynamically into smaller bricks, and assigns them adaptively to graphics pipes to minimize the costs of texture swapping. With the new method, Phong shaded images can be easily created by computing the gradients on the fly and using the color matrix feature of OpenGL. We report experimental results on an SGI Onyx2 for the various large datasets.

  • PDF

Parallel Processing for Integral Imaging Pickup Using Multiple Threads

  • Jang, Young-Hee;Park, Chan;Park, Jae-Hyeung;Kim, Nam;Yoo, Kwan-Hee
    • International Journal of Contents
    • /
    • v.5 no.4
    • /
    • pp.30-34
    • /
    • 2009
  • Many studies have been done on the integral imaging pickup whose objective is to get efficiently elemental images from a lens array with respect to three-dimensional (3D) objects. In the integral imaging pickup process, it is necessary to render an elemental image from each elemental lens in a lens array for 3D objects, and then to combine them into one total image. The multiple viewpoint rendering (MVR) is one of various methods for integral imaging pickup. This method, however, has the computing and rendering time problem for obtaining element images from a lot of elemental lens. In order to solve the problems, in this paper, we propose a parallel MVR (PMVR) method to generate elemental images in a parallel through distribution of elemental lenses into multiple threads simultaneously. As a result, the computation time of integral imaging using PMVR is reduced significantly rather than a sequential approach and then we showed that the PMVR is very useful.

Parallel Rendering of High Quality Animation based on a Dynamic Workload Allocation Scheme (작업영역의 동적 할당을 통한 고화질 애니메이션의 병렬 렌더링)

  • Rhee, Yun-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.1
    • /
    • pp.109-116
    • /
    • 2008
  • Even though many studies on parallel rendering based on PC clusters have been done. most of those did not cope with non-uniform scenes, where locations of 3D models are biased. In this work. we have built a PC cluster system with POV-Ray, a free rendering software on the public domain, and developed an adaptive load balancing scheme to optimize the parallel efficiency Especially, we noticed that a frame of 3D animation are closely coherent with adjacent frames. and thus we could estimate distribution of computation amount, based on the computation time of previous frame. The experimental results with 2 real animation data show that the proposed scheme reduces by 40% of execution time compared to the simple static partitioning scheme.

  • PDF

High-Performance Multi-GPU Rendering Based on Implicit Synchronization (묵시적 동기화 기반의 고성능 다중 GPU 렌더링)

  • Kim, Younguk;Lee, Sungkil
    • Journal of KIISE
    • /
    • v.42 no.11
    • /
    • pp.1332-1338
    • /
    • 2015
  • Recently, growing attention has been paid to multi-GPU rendering to support real-time high-quality rendering at high resolution. In order to attain high performance in real-time multi-GPU rendering, great care needs to be taken to reduce the overhead of data transfer among GPUs and frame composition. This paper presents a novel multi-GPU algorithm that greatly enhances split frame rendering with implicit query-based synchronization. In order to support implicit synchronization in frame composition, we further present a message queue-based scheduling algorithm. We carried out an experiment to evaluate our algorithm, and found that our algorithm improved rendering performance up to 200% more than previously existing algorithms.