

제21회 한국정보처리학회 춘계학술발표대회 논문집 제11권 제1호 (2004. 5)

1655

David II: 효과적인 메모리 시스템을 가지는
병렬 렌더링 프로세서

이길환*, 박우찬**, 김일산*, 한탁돈*
*연세대학교 컴퓨터과학과
**세종대학교 인터넷공학과

e-mail : kiwh@kurene.yonsei.ac.kr

David II: A new architecture for parallel rendering processors
with effective memory system

Kil-Whan Lee*, Woo-Chan Park**, Il-San Kim*,Tack-Don Han*
*Dept. of Computer Science, Yonsei University

**Dept. of Computer Engineering, Sejong University

요 약

Current rendering processors are organized mainly to process a triangle as fast as possible and recently parallel 3D rendering processors,
which can process multiple triangles in parallel with multiple rasterizers, begin to appear. For high performance in processing triangles, it
is desirable for each rasterizer have its own local pixel cache. However, the consistency problem may occur in accessing the data at the
same address simultaneously by more than one rasterizer. In this paper, we propose a parallel rendering processor architecture, called
DAVID II, resolving such consistency problem effectively. Moreover, the proposed architecture reduces the latency due to a pixel cache
miss significantly. The experimental results show that DAVID II achieves almost linear speedup at best case even in sixteen rasterizers.

1. Introduction
Currently, high-performance rendering processors with

moderate prices are announced and adopted in almost all of
PCs. Even in the game consoles, such as Sony’s
PlayStation®2 [1] and MS X-Box, 3D graphics are
accelerated with their own processors. Then, current
rendering processors aim to process triangles (or a primitives)
one at a time with their multiple pixel pipelines. However, the
performance improvement by this approach is still
insufficient to produce truly realistic scenes. Thus, the
concurrent execution on multiple triangles at a time should be
provided.

As the semiconductor technology advances, it is possible
to produce a parallel rendering processor by integrating the
multiple rasterizers into a single chip. Sony’s GScube
includes 16 graphics processing units (GPUs) integrated with
256-Mb embedded DRAM [2]. Because the output of the 16
GPUs is fed into a pixel merge IC which drives the data
stream to a video display, each GPU must have its own frame
buffer, which is similar to a sort-last parallel rendering
machine as classified in [3]. Thus a large amount of
embedded DRAM should be integrated.

Parallel rendering with a single frame buffer, which can be
classified into the sort middle machine, causes the

consistency problem in case more than one rasterizer
accesses the data at the same address. In [4], a superscalar
rendering processor (SRP) with superscalar principles for
increasing the available parallelism is presented. The
consistency problem is detected automatically by the
dependency testing. But, the additional hardware for the
superscalar execution, such as the dependency testing
hardware, should be provided. Special manipulations in case
of large triangles and the triangle strips are also required to
boost the parallelism. Because an ideal multi-ported frame
buffer is assumed, only triangle-level parallelism for the
benchmarks is shown in their results.

In this paper, we propose a new parallel rendering
processor architecture in which each rasterizer executes a
conventional rasterization pipeline with its local pixel cache.
We allow the consistency problem to arise in each pixel
cache. But we maintain the consistency in the frame buffer by
performing additional consistency-tests (C-tests) for all pixels
within each pixel cache block, whenever it is written into the
frame buffer. A C-test implies z-test and alpha-blending
operations for a pixel. The proposed architecture also reduce
significantly the latency due to a pixel cache miss by
executing the rasterization pipeline immediately after
transmitting the cache block on which a miss generated into

제21회 한국정보처리학회 춘계학술발표대회 논문집 제11권 제1호 (2004. 5)

1656

the memory interface unit (MIU).
To validate the proposed architecture, various simulation

results with three benchmarks are given. We also calculate
the memory latency reduction rates according to the number
of rasterizers. We can achieve up to 90% zero-latency
memory system even in sixteen rasterizers.

In the next section, we give a brief overview of a
conventional rasterization pipeline flow. In Section 3, we
propose our architecture. The three memory systems of the
proposed architecture are discussed in Section 4. Various
simulation results and performance evaluation are given in
Section 5. Conclusions are presented in Section 6.

fragment information

Texture read/filter

Texture blend

z-read

z-test

alpha-test

z-write

Color read

alpha-blending

Color write

Texture
Cache

External
Memory

Depth
Cache

Color
Cache

Pixel Cache

Fig. 1. A conventional pixel rasterization pipeline.

2. A Conventional Rasterization Pipeline

The rendering process consists of two stages: geometry
processing and rasterization. A general rasterization pipeline
consists of three steps: triangle setup, edge-walk, and pixel
rasterization. A conventional pixel rasterization pipeline is
shown in Fig. 1 [6]. The first two stages read four or eight
texels from the texture cache, perform either bi-linear or tri-
linear filtering on them to produce a single texel, and blend
the texel with the pixel color. The alpha-value of the current
fragment is then compared with that of the filtered texel. The
next two stages read the z-value from the depth cache within
the pixel cache and compare it with that of the current
fragment. Observe that the pixel cache consists of the depth
cache and the color cache, as shown by a dotted box in Fig. 1.
If the z-test is successful, a new z-value is written into the
depth cache. Finally, we read the color data from the color
cache of the pixel cache, alpha-blend them with the result of
texture blending, and then write the final color data back to
the color cache.

3. The Proposed Architecture

Fig. 2 shows the proposed parallel rendering processor
architecture. The issue unit does not exist, the ALUs for C-
tests are inserted in between MIU and the frame buffer, and
the pixel cache is locally placed on each rasterizer.

Each rasterizer performs the rasterization with its local
texture cache and local pixel cache. As opposed to SRP, the
dependency testing does not exist. Thus, triangle-level
parallelism of the proposed architecture is certainly 100%.
But, the consistency problem occurs undoubtedly in the pixel
cache.

One of the main ideas of this paper is that we allow the

consistency problem to arise in each pixel cache, but we
maintain the consistency strictly in the frame buffer. The data
in the pixel cache are transmitted into the frame buffer
whenever a pixel cache miss occurs. It is also generated in
flushing the pixel cache when the rasterization of the current
frame is completed. In the proposed architecture, the
consistency of the frame buffer is maintained by performing
additional C-tests for each transmitted block from the pixel
cache with the corresponding block on the frame buffer.

Rasterizer 1

Texture
cache

Rasterizer 2 Rasterizer n

Pixel
cache

Texture
cache

Pixel
cache

Texture
cache

Pixel
cache

Fetch unit Command queue

Memory interface unit (MIU)

Frame buffer

ALUs for C-tests

Fig. 2. The proposed architecture.

Another main idea is that the proposed architecture, even

though a pixel cache miss occurs, does not wait until the
cache miss handling is completed. The proposed architecture
rather continues to execute the rasterization immediately after
transmitting the cache block on which a miss generated into
MIU. Thus, the latency due to a cache miss, which includes
the time to transfer the corresponding block from the frame
buffer into the pixel cache, is significantly reduced. Moreover,
the rasterization pipeline and C-tests can be executed
independently.

4. The Memory Systems of the Proposed Architecture

A unified memory system is widely adopted by recent
rendering processors. As mentioned in [5], the biggest
advantage of a single graphics memory system is the
dynamic reallocation of memory bandwidth. The external bus
width of a current rendering processor is either 128 bits or
256 bits. It is expected that a wider bus will be announced in
the next generation rendering processors. The pixel cache and
the texture cache are essentially included into a rendering
processor to use a wide external bus effectively and to run the
rasterization pipeline as high a rate as possible.

A conventional MIU has several queues to buffer the data
transmissions between the processor and the external memory.
For example, each memory controller in [5] has five request
queues. The replaced cache blocks transmitted from the pixel
cache are fed into the pixel output queue in MIU and then
each of them is written into the frame buffer after C-tests. It
is desirable for an effective memory system that the input rate
of MIU should match well with the output rate of MIU.

Fig. 3 shows the three memory systems for the proposed
architecture: conventional DRAMs for the frame buffer
(CDFB), C-RAMs for the frame buffer (CRFB), and
embedded DRAMs for the frame buffer (EDFB). The shaded
blocks reside within a rendering processor chip. The non-
shaded blocks can be organized as separate chips. The three
figures in Fig. 3 are arranged according to the output rate of

제21회 한국정보처리학회 춘계학술발표대회 논문집 제11권 제1호 (2004. 5)

1657

MIU; that is, conventional DRAMs in Fig. 3 (a) have the
lowest output rate, C-RAMs in Fig. 3 (b) are the next, and
embedded DRAMs in Fig. 3 (c) have the highest rate.

MIU

ALUs for C-tests

Conventional DRAMs
(DDR, RAMBUS, etc.) for

frame buffer

C-RAMs

MIU

ALUs for C-tests

Frame buffer

 (a) Conventional DRAMs (b) C-RAMs

Embedded DRAMs for
frame buffer

MIU

ALUs for C-tests

(c) Embedded DRAMs

Fig. 3. The three memory systems.

In CDFB, conventional DRAMs are used for the frame
buffer and the ALUs for C-tests are included within the
rendering processor. On the other hand in CRFB, C-RAMs
are used for the frame buffer and the ALUs for C-tests are
included within C-RAMs. Note that the relationship between
the processor and the frame buffer in CDFB is read-modify-
write, while that in CRFB is write-only. Thus, in accessing
the frame buffer for rasterization, CRFB requires only a half
amount of the memory bandwidth of CDFB. However, CDFB
has an overwhelming advantage over CRFB in terms of the
cost-effectiveness, because C-RAMs are too expensive to
develop.

Because C-tests are performed per cache block, the
processing style of C-RAMs is similar to that of current
DRAMs. Thus, C-RAMs can be implemented by adding
simple hardware logics into current DRAMs, while 3D-
RAMs include an internal cache and other complex schemes
to improve the performance of the internal cache.

In EDFB, because both the ALUs for C-tests and the frame
buffer are included in the rendering processor, a very wide
bus width, for example more than 1024 bits, between MIU
and the frame buffer is available and the latency to access the
frame buffer is also reduced. Note that Sony’s PlayStation®2
and GScube are typical rendering processors with embedded
DRAMs for the frame buffer.

5. Experimental Simulation Results

In order to validate the proposed architecture, various
simulation results are given in this section. A trace-driven
simulator has been built for the proposed architecture. The
traces are generated with three benchmarks, Quake3 demo I,
Quake3 demo II, and Lightscape for 1600×1200 screen
resolution by modifying the Mesa OpenGL compatible API.

For each benchmark, 100 frames are used to generate each
trace. The model data of each benchmark are evenly
distributed into the given number of rasterizers by round-
robin fashion. For example, if the number of the rasterizers is
n, the first triangle, the (n+1)-th triangle, and so on are

inputted into the first rasterizer.
With these traces, the pixel cache simulations are

performed by modifying the well-known DineroIII cache
simulator [7]. The memory latency reduction rates shown in
Section 5.1 are also calculated for each trace.

Quake3 in particular is one of typical current video games
and is frequently used as a benchmark in other related works
for their simulations. Lightscape is a product of
SPECviewperfTM and is an industrial standard benchmark
for measuring the performance of 3D rendering systems
running under OpenGL.

(a) Quake3 I

(b) Quake3 II

(c) Lightscape

Fig. 4. The memory latency reduction rates.

5.1 The memory latency reduction rates
A replaced cache block from the pixel cache is stored into

the tail entry of a pixel output queue indicated by the tail
pointer. When the replaced block reaches the head entry
indicated by the head pointer, it is written into the frame
buffer. The overall pipeline does not stall as long as the pixel
output queue is not full. Thus, with a buffer of infinite size,
the proposed architecture is able to achieve a zero-latency
memory system.

Fig. 4 shows the memory latency reduction rates for the
three memory systems. Note that the reduction rate of 100%
represents a zero-latency memory system. If the reduction
rate is 0%, the full memory latency is required for a pixel
cache miss. We assume that the numbers of cycles to
complete C-tests for a pixel cache block for CDFB, CRFB,

제21회 한국정보처리학회 춘계학술발표대회 논문집 제11권 제1호 (2004. 5)

1658

and EDFB are 16, 12, and 8, respectively. The number of
cycles can be determined according to the block size of a
pixel cache, the number of ALUs, the DRAM performance,
etc. We also assume that the number of entries in a pixel
output queue is fixed to 128, because the simulation results
on the reduction rates for various numbers of entries, which
is not provided in this paper, show that the numbers of entries
from 4 up to 1024 affect the reduction rates under 8%.

The simulation results show that an almost zero-latency
memory system can be achieved with CRFB and EDFB with
one rasterizer and two rasterizers. With four rasterizers,
significant reduction rates are achieved for EDFB. Because
the number of replaced blocks fed into MIU at the same time
increases as the number of the rasterizers increases, the
reduction rates decrease as the number of rasterizers
increases. The reduction rates are not sufficient when the
number of rasterizers is eight or sixteen.

5.2 Performance evaluation
To evaluate the performance analytically, we calculate the

average fragments per cycle (AFPC) with a rasterizer. In [6],
the miss penalties due to both the pixel cache and the texture
cache are assumed to degrade the overall performance. In this
paper, we assume that only the memory latency due to the
pixel cache can degrade the performance. Hence, AFPC can
be calculated as follows.

)),1(1/(1 reductionLatencyRateMissAFPC −××+=
where Miss_Rate is the miss rate of the pixel cache, Latency
is the cycle times of the memory latency due to a pixel cache
miss, and Reduction is the reduction rates shown in Fig. 4.
The denominator of the above equation represents the
average cycles per fragment with a rasterizer.

Fig. 5 shows AFPCs for the proposed architecture with
different numbers of rasterizers and five different
configurations. EDFB with 0% reduction rate is denoted by
EDFB0. The AFPC of EDFB0 is provided to compare it with
those of other four proposed configurations. For example, for
four rasterizers in Fig. 5 (a), the AFPC of EDFB0 is almost
the same as that of CDFB. The performance increment for n
rasterizers can be calculated easily by multiplying n with
AFPC of the architecture with n rasterizers.

(a) Quake3 I

(b) Quake3 II

(c) Lightscape

Fig. 5. AFPCs of the proposed architecture.

6. Conclusions
This paper proposes a new parallel rendering processor

architecture solving the consistency problem of the pixel
cache and significantly reducing the memory latency due to
the pixel cache miss. As a future work, we would like to
develop the prototype of the proposed architecture.

References

[1] M. S. Suzuoki et al., “A microprocessor with a 128-bit CPU, ten
floating-point MAC's, four floating-point dividers, and an
MPEG-2 decoder,” IEEE Journal of Solid-State Circuits, vol. 34,
pp. 1608-1618, Nov. 1999.

[2] A. K. Khan et al., “A 150-MHz graphics rendering processor
with 256-Mb embedded DRAM,” IEEE Journal of Solid-State
Circuits, vol. 36, no. 11, pp. 1775-1783, Nov. 2001.

[3] S. Molnar, M. Cox, M. Ellsworth, and H. Fuchs, "A sorting
classification of parallel rendering," IEEE Computer Graphics
and Applications, vol. 14, no. 4, pp. 23-32, July 1994.

[4] A. Wolfe and D. B. Noonburg, "A superscalar 3D graphics
engine," In Proceedings of MICRO 32, pp. 50-61, 1999.

[5] J. McCormack, R. McNamara, C. Gianos, L. Seiler, N. P. Jouppi,
K. Correl, T. Dutton, and J. Zurawski, “Neon: a (big) (fast)
single-chip 3D workstation graphics accelerator,” Research
Report 98/1, Western Research Laboratory, Compaq Corporation,
Aug. 1998 (revised July 1999).

[6] W. C. Park, K. W. Lee, I. S. Kim, T. D. Han, and S. B. Yang, “An
effective pixel rasterization pipeline architecture for 3D
rendering processors,” IEEE Transactions on Computers, Vol. 52,
No. 11, pp. 1501-1508, Nov. 2003.

[7] M. D. Hill, J. R. Larus, A. R. Lebeck, M. Talluri, and D. A.
Wood, “Wisconsin architectural research tool set,” ACM
SIGARCH Computer Architecture News, vol 21, pp. 8-10, Sep.
1993.

