• 제목/요약/키워드: Parallel Preconditioner

검색결과 22건 처리시간 0.018초

대형비대칭 이산행렬의 CRAY-T3E에서의 해법을 위한 확장가능한 병렬준비행렬 (A Scalable Parallel Preconditioner on the CRAY-T3E for Large Nonsymmetric Spares Linear Systems)

  • 마상백
    • 정보처리학회논문지A
    • /
    • 제8A권3호
    • /
    • pp.227-234
    • /
    • 2001
  • In this paper we propose a block-type parallel preconditioner for solving large sparse nonsymmetric linear systems, which we expect to be scalable. It is Multi-Color Block SOR preconditioner, combined with direct sparse matrix solver. For the Laplacian matrix the SOR method is known to have a nondeteriorating rate of convergence when used with Multi-Color ordering. Since most of the time is spent on the diagonal inversion, which is done on each processor, we expect it to be a good scalable preconditioner. We compared it with four other preconditioners, which are ILU(0)-wavefront ordering, ILU(0)-Multi-Color ordering, SPAI(SParse Approximate Inverse), and SSOR preconditiner. Experiments were conducted for the Finite Difference discretizations of two problems with various meshsizes varying up to $1025{\times}1024$. CRAY-T3E with 128 nodes was used. MPI library was used for interprocess communications, The results show that Multi-Color Block SOR is scalabl and gives the best performances.

  • PDF

PARALLEL PERFORMANCE OF MULTISPLITTING METHODS WITH PREWEIGHTING

  • Han, Yu-Du;Yun, Jae-Heon
    • 대한수학회지
    • /
    • 제49권4호
    • /
    • pp.805-827
    • /
    • 2012
  • In this paper, we first study convergence of a special type of multisplitting methods with preweighting, and then we provide some comparison results of those multisplitting methods. Next, we propose both parallel implementation of an SOR-like multisplitting method with preweighting and an application of the SOR-like multisplitting method with preweighting to a parallel preconditioner of Krylov subspace method. Lastly, we provide parallel performance results of both the SOR-like multisplitting method with preweighting and Krylov subspace method with the parallel preconditioner to evaluate parallel efficiency of the proposed methods.

병렬 컴퓨터를 이용한 형상 압연공정 유한요소 해석의 분산병렬처리에 관한 연구 (Finite Element Analysis of Shape Rolling Process using Destributive Parallel Algorithms on Cray T3E)

  • 권기찬;윤성기
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1215-1230
    • /
    • 2000
  • Parallel Approaches using Cray T3E which is NIPP (Massively Parallel Processors) machine are presented for the efficient computation of the finite element analysis of 3-D shape rolling processes. D omain decomposition method coupled with parallel linear equation solver is used. Domain decomposition is applied for obtaining element tangent stifffiess matrices and residual vectors. Direct and iterative parallel algorithms are used for solving the linear equations. Direct algorithm is_parallel version of direct banded matrix solver. For iterative algorithms, the well-known preconditioned conjugate gradient solver with Jacobi preconditioner is also employed. Moreover a new effective iterative scheme with block inverse matrix preconditioner, which is named by present authors, is presented and its results are compared with the one using Jacobi preconditioner. PVM and MPI are used for message passing and synchronization between processors. The performance and efficiency of each algorithm is discussed and comparisons are made among different algorithms.

COMPARISONS OF PARALLEL PRECONDITIONERS FOR THE COMPUTATION OF SMALLEST GENERALIZED EIGENVALUE

  • Ma, Sang-Back;Jang, Ho-Jong;Cho, Jae-Young
    • Journal of applied mathematics & informatics
    • /
    • 제11권1_2호
    • /
    • pp.305-316
    • /
    • 2003
  • Recently, an iterative algorithm for finding the interior eigenvalues of a definite matrix by CG-type method has been proposed. This method compares to the inverse power method. The given matrices A, and B are assumed to be large and sparse, and SPD( Symmetric Positive Definite) The CG scheme for the optimization of the Rayleigh quotient has been proven a very attractive and promising technique for large sparse eigenproblems for smallest eigenvalue. Also, it is very amenable to parallel computations, like the CG method for the linear systems. A proper choice of the preconditioner significantly improves the convergence of the CG scheme. But for parallel computations we need to find an efficient parallel preconditioner. Our candidates we ILU(0) in the wave-front order, ILU(0) in the multi-coloring order, Point-SSOR(Symmetric Successive Overrelaxation), and Multi-Color Block SSOR preconditioner. Wavefront order is a simple way to increase parallelism in the natural order, and Multi-coloring realizes a parallelism of order(N), where N is the order of the matrix. Another choice is the Multi-Color Block SSOR(Symmetric Successive OverRelaxation) preconditioning. Block SSOR is a symmetric preconditioner which is expected to minimize the interprocessor communication due to the blocking. We implemented the results on the CRAY-T3E with 128 nodes. The MPI (Message Passing Interface) library was adopted for the interprocessor communications. The test problem was drawn from the discretizations of partial differential equations by finite difference methods. The results show that for small number of processors Multi-Color ILU(0) has the best performance, while for large number of processors Multi-Color Block SSOR performs the best.

A PARALLEL IMPLEMENTATION OF A RELAXED HSS PRECONDITIONER FOR SADDLE POINT PROBLEMS FROM THE NAVIER-STOKES EQUATIONS

  • JANG, HO-JONG;YOUN, KIHANG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제22권3호
    • /
    • pp.155-162
    • /
    • 2018
  • We describe a parallel implementation of a relaxed Hermitian and skew-Hermitian splitting preconditioner for the numerical solution of saddle point problems arising from the steady incompressible Navier-Stokes equations. The equations are linearized by the Picard iteration and discretized with the finite element and finite difference schemes on two-dimensional and three-dimensional domains. We report strong scalability results for up to 32 cores.

A PARALLEL PRECONDITIONER FOR GENERALIZED EIGENVALUE PROBLEMS BY CG-TYPE METHOD

  • MA, SANGBACK;JANG, HO-JONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제5권2호
    • /
    • pp.63-69
    • /
    • 2001
  • In this study, we shall be concerned with computing in parallel a few of the smallest eigenvalues and their corresponding eigenvectors of the eigenvalue problem, $Ax={\lambda}Bx$, where A is symmetric, and B is symmetric positive definite. Both A and B are large and sparse. Recently iterative algorithms based on the optimization of the Rayleigh quotient have been developed, and CG scheme for the optimization of the Rayleigh quotient has been proven a very attractive and promising technique for large sparse eigenproblems for small extreme eigenvalues. As in the case of a system of linear equations, successful application of the CG scheme to eigenproblems depends also upon the preconditioning techniques. A proper choice of the preconditioner significantly improves the convergence of the CG scheme. The idea underlying the present work is a parallel computation of the Multi-Color Block SSOR preconditioning for the CG optimization of the Rayleigh quotient together with deflation techniques. Multi-Coloring is a simple technique to obatin the parallelism of order n, where n is the dimension of the matrix. Block SSOR is a symmetric preconditioner which is expected to minimize the interprocessor communication due to the blocking. We implemented the results on the CRAY-T3E with 128 nodes. The MPI(Message Passing Interface) library was adopted for the interprocessor communications. The test problems were drawn from the discretizations of partial differential equations by finite difference methods.

  • PDF

이산화된 Navier-Stokes 방정식의 영역분할법을 위한 병렬 예조건화 (Parallel Preconditioner for the Domain Decomposition Method of the Discretized Navier-Stokes Equation)

  • 최형권;유정열;강성우
    • 대한기계학회논문집B
    • /
    • 제27권6호
    • /
    • pp.753-765
    • /
    • 2003
  • A finite element code for the numerical solution of the Navier-Stokes equation is parallelized by vertex-oriented domain decomposition. To accelerate the convergence of iterative solvers like conjugate gradient method, parallel block ILU, iterative block ILU, and distributed ILU methods are tested as parallel preconditioners. The effectiveness of the algorithms has been investigated when P1P1 finite element discretization is used for the parallel solution of the Navier-Stokes equation. Two-dimensional and three-dimensional Laplace equations are calculated to estimate the speedup of the preconditioners. Calculation domain is partitioned by one- and multi-dimensional partitioning methods in structured grid and by METIS library in unstructured grid. For the domain-decomposed parallel computation of the Navier-Stokes equation, we have solved three-dimensional lid-driven cavity and natural convection problems in a cube as benchmark problems using a parallelized fractional 4-step finite element method. The speedup for each parallel preconditioning method is to be compared using upto 64 processors.

A Robust Preconditioner on the CRAY-T3E for Large Nonsymmetric Sparse Linear Systems

  • Ma, Sangback;Cho, Jaeyoung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제5권1호
    • /
    • pp.85-100
    • /
    • 2001
  • In this paper we propose a block-type parallel preconditioner for solving large sparse nonsymmetric linear systems, which we expect to be scalable. It is Multi-Color Block SOR preconditioner, combined with direct sparse matrix solver. For the Laplacian matrix the SOR method is known to have a nondeteriorating rate of convergence when used with Multi-Color ordering. Since most of the time is spent on the diagonal inversion, which is done on each processor, we expect it to be a good scalable preconditioner. Finally, due to the blocking effect, it will be effective for ill-conditioned problems. We compared it with four other preconditioners, which are ILU(0)-wavefront ordering, ILU(0)-Multi-Color ordering, SPAI(SParse Approximate Inverse), and SSOR preconditioner. Experiments were conducted for the Finite Difference discretizations of two problems with various meshsizes varying up to 1024 x 1024, and for an ill-conditioned matrix from the shell problem from the Harwell-Boeing collection. CRAY-T3E with 128 nodes was used. MPI library was used for interprocess communications. The results show that Multi-Color Block SOR and ILU(0) with Multi-Color ordering give the best performances for the finite difference matrices and for the shell problem only the Multi-Color Block SOR converges.

  • PDF

A partial proof of the convergence of the block-ADI preconditioner

  • Ma, Sang-Back
    • 대한수학회논문집
    • /
    • 제11권2호
    • /
    • pp.495-501
    • /
    • 1996
  • There is currently a regain of interest in ADI (Alternating Direction Implicit) method as a preconditioner for iterative Method for solving large sparse linear systems, because of its suitability for parallel computation. However the classical ADI is not applicable to FE(Finite Element) matrices. In this paper wer propose a Block-ADI method, which is applicable to Finite Element metrices. The new approach is a combination of classical ADI method and domain decompositi on. Also, we provide a partial proof of the convergence based on the results from the regular splittings, in case the discretization metrix is symmetric positive definite.

  • PDF

PARALLEL PERFORMANCE OF THE Gℓ-PCG METHOD FOR IMAGE DEBLURRING PROBLEMS

  • YUN, JAE HEON
    • Journal of applied mathematics & informatics
    • /
    • 제36권3_4호
    • /
    • pp.317-330
    • /
    • 2018
  • We first provide how to apply the global preconditioned conjugate gradient ($G{\ell}-PCG$) method with Kronecker product preconditioners to image deblurring problems with nearly separable point spread functions. We next provide a coarse-grained parallel image deblurring algorithm using the $G{\ell}-PCG$. Lastly, we provide numerical experiments for image deblurring problems to evaluate the effectiveness of the $G{\ell}-PCG$ with Kronecker product preconditioner by comparing its performance with those of the $G{\ell}-CG$, CGLS and preconditioned CGLS (PCGLS) methods.