
A Robust Preconditioner on the CRAY-T3E for Large

Nonsymmetric Sparse Linear Systems

Sangback Ma and Jaeyoung Cho

J. KSIAM Vol.5, No.1, 85-100, 2001

Abstract

In this paper we propose a block-type parallel preconditioner for solving large
sparse nonsymmetric linear systems, which we expect to be scalable. It is Multi-
Color Block SOR preconditioner, combined with direct sparse matrix solver. For
the Laplacian matrix the SOR method is known to have a nondeteriorating rate of
convergence when used with Multi-Color ordering. Since most of the time is spent
on the diagonal inversion, which is done on each processor, we expect it to be a
good scalable preconditioner. Finally, due to the blocking effect, it will be effective
for ill-conditioned problems. We compared it with four other preconditioners,
which are ILU(0)-wavefront ordering, ILU(0)-Multi-Color ordering, SPAI(SParse
Approximate Inverse), and SSOR preconditioner. Experiments were conducted for
the Finite Difference discretizations of two problems with various meshsizes varying
up to 1024 x 1024 , and for an ill-conditioned matrix from the shell problem from
the Harwell-Boeing collection. CRAY-T3E with 128 nodes was used. MPI library
was used for interprocess communications. The results show that Multi-Color
Block SOR and ILU(0) with Multi-Color ordering give the best performances for
the finite difference matrices and for the shell problem only the Multi-Color Block
SOR converges.

1 Introduction

Iterative solutions of large sparse linear systems require the use of preconditioning
techniques in order to converge in a reasonable number of iterations. Reordering the
equations through multi-coloring provides a parallelism of order N , where N is the
dimension of the given matrix. For example, if the matrix has property A, as is the
case for the standard 5-point matrices obtained from centered Finite Difference (FD)
discretizations of elliptic Partial Differential Equations (PDE’s), there is a partition of
the grid-points in two disjoint subsets such that the unknowns of any one subset are only
related to unknowns of the other subset. This enables to produce a reordered matrix
having a block-tridiagonal matrix, where the diagonal blocks are diagonal matrices.
There are several different ways of exploiting this structure. For example, the unknowns
associated with one of the subsets can be easily eliminated, and the resulting reduced
system is often well-conditioned. This ‘two-coloring’ often referred to as a red-black

85

86 SANGBACK MA

or checkerboard ordering, can be generalized to arbitrary sparse matrices by using
multi-coloring. But the drawback of this approach is that it often suffers from the
deterioration of the rate of convergence with certain iterative methods, such as in
preconditioned CG(Conjugate Gradient) method.

Wavefront or level scheduling[11] technique is still another way to achieve a paral-
lelism while preserving the initial ordering. It does not suffer from the deterioration of
the rate of convergence as with multi-coloring, but the maximum parallelism is deter-
mined by the lengths of the wavefront, which is often nonuniform.

In the SPAI approach a sparse approximate inverse is computed explicitly, and then
applied as a preconditioner to an iterative method. The computation of the precondi-
tioner is inherently parallel, and its application only requires a matrix-vector product.
The sparsity pattern of the approximate inverse can be fixed in advance, or expanded
for more accuracy. The SPAI computes the entries, M, so that it minimizes ‖AM − I‖
under suitable norm, often the Frobenius norm. It decomposes into independent least
squares problems, which can be solved in parallel. There are many variations in the
SPAI approach depending on the way the residual norm is minimized and the choice
of sparsity pattern. In this paper we adopted the approach by Grote and Huckcle[4].

The Multi-Color Block SOR method combines the Multi-Coloring with the Block
SOR method. It is known that for the 5-point Laplacian the SOR method has the same
rate of convergence even with the Multi-Coloring, while the ILU(0) preconditioned CG
method has a low rate of convergence with the Multi-Coloring. Hence, we expect the
Multi-Color Block SOR method to be a good choice.

The CRAY-T3E computer in ETRI, Korea is a massively parallel message-passing
machine with the 136 individual processing node(PE)s interconnected in a 3D-Torus
structure. Each PE, a DEC Alpha EV5.6 chip, is capable of delivering up tp 900
Megaflops,amounting to 115 GigaFlops in total. Each PE has 128 MBs of core memory.

2 Multi-coloring and Wavefront reordering

2.1 Multi-color reordering

Given a mesh, multi-coloring consists of assigning a color to each point so that the
couplings between two points of the same color are eliminated in the discretization
matrix. For example, for the 5-point Laplacian on a square with two colors in the
checkerboard fashion we can remove the coupling between any two points of the same
color, so that the values at all points of one color can be updated simultaneously.
Similarly, four colors are needed to color the grid points of the 9-point Laplacian.
However, it has been known that the convergence rate for the reordered systems often
deteriorates. For the model problem SSOR and preconditioned-CG with the Red/Black
ordering have a worse convergence rate than with the natural ordering, while SOR has
the same rate if optimal ω is used. The table 1 contains the rates of convergence
for SSOR with optimal ω, and ILU(0) preconditioned CG methods with natural and

LARGE NONSYMMETRIC SPARSE LINEAR SYSTEMS 87

red/black ordering for the 5-point Laplacian matrix.[5]

Table 1: Rate of convergence when reordering is used. h is the meshsize.
SOR SSOR ILU-CG

Natural Ordering O(h) O(h) O(
√

h)
Red/Black Ordering O(h) O(h2) O(h)

The Red/Black ordering can be extended to Multi-Color ordering schemes. For the
nine-point Laplacian with properly selected ω the convergence rate of SOR remains the
same as with the natural ordering. O’Leary[7] has considered several other ordering
schemes for the 9-point Laplacian and has shown that the convergence rate of SOR
iteration is no worse than that with the natural ordering.

However, even though the performance is not as sensitive to ω as it is to ρ in ADI,
it is preferable to have an optimal ω for the best performance as a preconditioner.
For model problems with the 5-point, Laplacian the optimal ω both with the natural
ordering and red/black ordering has been determined, but the determination of such
ω is very difficult, in general. Also, when the points of one color is being updated, the
other points are idle. This could cause CPU idle in parallel execution, depending on
the actual mapping between the grid points and the processors.

Regarding the blocked version of SOR, blocking in general increases the convergence
rate while the cost of one solution per iteration increases. For the model problem with
the 5-point Laplacian the convergence rate of the line-SOR method is 2

√
2πh,

√
2 times

that of point SOR method. If the square was divided into L subsquares, each with size
of q × q, q = n/

√
L, the spectral radius of Block Jacobi has been found to be[2]

Sp(MJ) ≈ 1− qπ2h2/2, (1)

where MJ is the Block Jacobi iteration matrix. ¿From the relation about optimal
ω and the spectral radius of the Block SOR iteration matrix [15] the optimal ω∗ ≈
2/(1 +

√
qπh), and hence the rate of convergence is 2

√
qπh,

√
q times that of point

SOR. On the other hand since the diagonal blocks are no longer diagonal matrices,
inverting them involves some extra costs.

As preconditioners SOR and Block SOR methods are expected to perform well as
good preconditioners, although analytic explanation is not available. We could combine
Block SOR with Multi-coloring for parallel preconditioners.

Let the domain be divided into L blocks. Suppose that we apply a multi-coloring
technique, such as a greedy algorithm described in [14],to these blocks so that a block
of one color has no coupling with a block of the same color. Let Dj be the coupling
within the block j, and the Ej,k, k = 1, q, k 6= color(j) the coupling between the j-th
block and the other blocks of color k, where color(j) is the color of the block j.

Then, we can describe the Multi-Color Block SOR as follows.

88 SANGBACK MA

Algorithm 2.1 Multi-Color Block SOR
Let q be the total number of colors, and color(i), i=1, L, be the array of the color

for each block.

1. Choose u0, and ω > 0.

2. For i > 0 Until Convergence Do

3. For kolor = 1, q Do

4. For j = 1, L Do

5. if(color(j) == kolor) then

6. (uGS
i+1)j

= Dj
−1(b−∑k=q−1

k=1 Ej,kui).

7. ui+1 = ui + ω ∗ (uGS
i+1 − ui).

8. endif

9. Endfor

10. Endfor

11. Endfor

The uGS
i is the i-th update of Block Gauss-Seidel iteration. If ω = 1 it is equivalent to

Block Gauss-Seidel method. Note that the innermost loop in line six and seven can be
executed in parallel.

2.2 Wavefront-ordering(Level scheduling)

Rather than pursuing the parallelisms through reordering, the wavefront technique
exploits the structure of the given matrix. If the matrix comes from the discretizations
of PDEs such as by FDM or FEM, the value of a certain node is usually dependent on
only the values of its neighbors. Hence, once the values of its neighbors are known that
node can be updated.

For example, let us assume that we have an ILU(0) factorization for the 5-point
Laplacian for the Poisson equation, and for a preconditioner we need to solve

Lz = y,

and

Ux = z

.
Wavefront technique(or Level scheduling) is a process of finding new ordering of the

nodes so that the new matrix would look like as in Fig. (1), where the Li’s are diagonal
blocks. This technique would work equally well for three dimensional problems as well
as two dimensional problems. For references, see [11]

LARGE NONSYMMETRIC SPARSE LINEAR SYSTEMS 89

Figure 1: Block partitioning for L

3 SPAI Preconditioner

We look for M such that ‖AM − I‖F is minimized where ‖‖F stands for the Frobenius
norm. Then since

‖AM − I‖F
2 =

n∑

k=1

‖(AM − I)ek‖2 (2)

finding such M separates into n independent least squares problems

min
mk

‖Amk − ek‖2 , k = 1, . . . , n, (3)

where ek has 1 in the k-th position and 0 elsewhere. If M is sparse, Eq. (3) becomes
n small least squares problems, which can be solved quickly.

The following is a description of the SPAI method as in [4].
Let τ be a given parameter controlling how much the approximate inverse is to be

close to the actual inverse.
(a) Choose an initial sparsity pattern J , where mk(j) 6= 0, j ∈ J .
(b) Compute the row indices I such that A(i, J) is not identically zero, i ∈ I. Let

Â = A(I, J), êk = ek(I). Find the QR decomposition of Â,

Â = Q

(
R
0

)
(4)

Then, solve
min
m̂k

‖Âm̂k − êk‖2 (5)

90 SANGBACK MA

and the residual r = A(., J)m̂k − ek .

While ‖r‖2 > τ

(c) Set K equal to {l|r(l) 6= 0}.
(d) Set J̃ equal to the set of all new column indices of A that

appear in all K rows but not in J .
(e)For each j ∈ J̃ find the direction uj such that
‖r + ujAej‖2 is minimized.

(f)For each j ∈ J̃ compute the 2-norm of the new residual
r + ujAej with the above uj . Delete from J̃

all but the indices leading to significant reduction in 2-norm.
(g) Determine the new indices Ĩ and update the QR decomposition

accordingly. Then, solve the new least squares problem, compute
the new residual r = Amk − ek and set
I = I∪, Ĩ, J = J ∪ j̃.

For further details see [4].

4 ILU(0) factorization

Meijerink and Van. der Vorst[6] introduced a so-called Incomplete LU(ILU) precondi-
tioner for symmetric matrices. The following is a modification of the original ILU for
nonsymmetric matrices, as described in [3]. Let A = LU + N , where Li,j = Ui,j = 0 if
Ai,j = 0 and Ni,j = 0 if Ai,j 6= 0. Let NZ(A), the nonzero pattern of A, denote the set
of pairs of (i,j) for which Ai,j , the (i, j) entry of A, is nonzero.

Algorithm 4.1 ILU Factorization
1. For i = 1, . . . , Until N Do

2. For j = 1, . . . , Until N Do

3. If((i,j) belongs to NZ(A)) then

4. si,j = Ai,j −
∑min(i,j)−1

t=1 Li,tUt,j .

5. if(i ≥ j) then Li,j = si,j .

6. if(i < j) then Ui,j = si,j/Li,i.

7. Endif

8. Endfor

9. Endfor

4.1 Point-SSOR algorithm

Algorithm 4.2 Point-SSOR Let A = D−E−F , where D is the diagonal part, −E ,
is the lowertriangular part and −F the uppertriangular part.

1. Choose x0.

LARGE NONSYMMETRIC SPARSE LINEAR SYSTEMS 91

2. For i=0, ... Do

(D − ωE)xi+ 1
2

= ((1 − ω)D + ωF)xi + ωb (6)

(D − ωF)xi+1 = ((1 − ω)D + ωE)xi+ 1
2

+ ωba

Endfor

5 Experiments

5.1 Test problems

• Problem 1 Elman’s problem [3]

−(bux)x − (cuy)y + (du)x + dux + (eu)y + euy + fu = g (7)
Ω = (0, 1)× (0, 1)

u = 0 on δΩ

where b = exp (−xy), c = exp (xy), d = β(x + y),

e = γ(x + y), f = 1
(1+xy) ,

and g is such that exact solution u = x exp (xy) sin (πx) sin (πy)

• Problem 2 Convection-diffusion equation

−ε4u + cosα ux + sin α uy = f, (8)
Ω = (0, 1)× (0, 1)
u = 0 on δΩ

(9)

• Problem 3 Cylindrical shell problem from Harwell-Boeing Collection [1] The
’s3dkq4m2.dat’ from the CYLSHELL set.

We have set ε = 0.0001, and alpha = 15 degree. Upwind scheme was adopted
for the convection term. 5-point approximation was used for 2-nd order derivatives in
Problem 1, and 9-point Laplacian for Problem 2. For problem 3 N = 90449 and the
total number of nonzeros is equal to 4820891. This matrix is very ill-conditioned with
an estimated condition number of 1.3511.

92 SANGBACK MA

Figure 2: Mapping between a square domain and processors

5.2 Domain mapping onto the processors

In this paper we assume that the domain is a square, which is further divided into p
rectangle-shaped blocks, where p is the number of the available processors. Further we
assume that there is a one-to-one correspondence between the p blocks and p processors.
See Fig. (2).

5.3 Results

BICGSTAB[17] was used as the outer iterative method. As for the manipulation and
storing of the matrices the CSR(Compress Sparse Row) format[13] was adopted, and the
MSR(Modified Sparse Row) format for the ILU(0) factorization and forward/backward
solves. Since CSR format was used, our experiments realistically simulates the un-
structured problems even though we used the unit square as our domain. We used the
wavefront-ordering for the point-SSOR method and the parameter ω was set to 1.2.
The τ parameter for the SPAI, which controls how much the approximate inverse is
going to be close the actual inverse was set to 0.4.

We set γ = 50, β = 1, ε = 0.1, α = 15, so that the resulting matrices for Problem
1 and 2 are nonsymmetric. For the multi-coloring we used a simple heuristic based on
a greedy algorithm as in [14]. Using this heuristic the number of colors required for
Problem 1 and 2 are 2 and 4, respectively.

For the Multi-Color Block SOR method we used the MA48 package to invert the
diagonal block. For the partitioning of the ’s3dkq4m2’ matrix of the shell problem we
have used the Metis 4.0 library by V. Kumar.

MPI(Message Passing Interface) library was used for the communications. This
enables the codes to be run independent of the machines.

LARGE NONSYMMETRIC SPARSE LINEAR SYSTEMS 93

The CPU time and the number of iterations are shown in the Tables. 2 - 10. ’X’
stands for the case where the memory was insufficient for the problem size. As we com-
pare the number of iterations in wavefront order and that in multi-coloring order, we
see little difference, unlike in the symmetric case, such as in the ILU(0)-preconditioned
CG method. Hence, we are led to believe that for problems tested the multi-coloring
order outperforms the wavefront order, which is verified in the tables. The SPAI pre-
conditioner is hardly competitive. In all cases ILU(0) with the multi-coloring order
outperforms the other preconditioners, except the Multi-Color Block SOR. Since the
cost of inverting and back-solving by MA48 is approximately proportional to (N/p)2,
for a given N increasing p reduces the cost quadratically. Hence, we observe that with
for a given N there ia a limit on p such that above this limit the Multi-Color Block
SOR preconditioner outperforms the ILU(0) with the Multi-Color ordering. The CPU
time does not include the proprocessing costs of generating the preconditioner matri-
ces. For the ’s3dkq4m2’ matrix from the shell problem only the Multi-Color Block SOR
converges. That matrix is veri ill-conditioned, with the condition number of 10−11.

94 SANGBACK MA

Table 2: Problem 1, with FDM, N=128x128
p = 4 p = 8 p = 16 p = 32 p = 64

Cpu time/Iterations
MC-BSOR(2) 2.41/6 0.71/6 0.33/6 0.18/6 0.25/8

SSOR-WAVEFRONT 1.42/62 1.04/61 1.07/61 1.36/63 1.86/61
ILU(0)-WAVEFRONT 0.99/50 0.80/53 0.90/54 1.07/50 1.59/52

ILU(0)-MULTICOL 0.95/50 0.70/53 0.66/54 0.69/51 0.97/53
SPAI, τ = 0.2 2.82/64 1.69/62 1.23/64 1.32/62 1.22/62
SPAI, τ = 0.4 4.28/144 2.41/142 1.78/137 1.50/135 4.14/153

Table 3: Problem 1 with FDM, N=256x256
p = 4 p = 8 p = 16 p = 32 p = 64

Cpu time/Iterations
MC-BSOR(2) 18.3/7 6.14/7 2.48/9 0.97/9 0.64/11

SSOR-WAVEFRONT 11.22/126 6.46/122 4.92/132 4.04/119 4.78/121
ILU(0)-WAVEFRONT 7.04/107 4.80/107 3.53/107 3.21/104 4.13/105

ILU(0)-MULTICOL 7.90/107 4.47/108 2.86/107 2.11/101 2.33/105
SPAI, τ = 0.2 21.96/137 12.48/171 6.90/136 4.80/137 4.35/141
SPAI, τ = 0.4 29.16/276 16.71/296 9.10/281 5.30/264 8.22/271

Table 4: Problem 1 with FDM, N=512x512
p = 4 p = 8 p = 16 p = 32 p = 64

Cpu time/Iterations
MC-BSOR(2) X X 21.0/12 7.6/12 3.6/15

SSOR-WAVEFRONT X 43.01/258 24.75/256 17.63/257 15.26/256
ILU(0)-WAVEFRONT X 32.05/234 18.91/234 13.12/224 12.15/226

ILU(0)-MULTICOL X 30.42/230 17.20/238 9.89/227 7.70/223
SPAI, τ = 0.2 214.24/330 95.58/322 53.38/312 30.02/302 19.25/318
SPAI, τ = 0.4 244.74/571 117.24/538 66.16/572 52.89/562 23.70/553

Table 5: Problem 1 with FDM, N=1024x1024
p = 4 p = 8 p = 16 p = 32 p = 64

Cpu time/Iterations
MC-BSOR(2) X X X 68.4/17 25.2/18

SSOR-WAVEFRONT X X X 106.48/534 73.81/563
ILU(0)-WAVEFRONT X X X 80.16/482 53.69/446

ILU(0)-MULTICOL X X X 67.09/467 41.02/492
SPAI, τ = 0.2 X X X 298.56/640 132.05/650
SPAI, τ = 0.4 X X X 316.43/1373 159.20/1254

LARGE NONSYMMETRIC SPARSE LINEAR SYSTEMS 95

Table 6: Problem 2 with FDM, N=128x128
p = 4 p = 8 p = 16 p = 32 p = 64

Cpu time/Iterations
MC-BSOR(2) 4.46/3 1.31/3 0.55/3 0.4/5 0.34/5

SSOR-WAVEFRONT 1.93/65 1.54/68 1.68/66 1.96/66 3.09/66
ILU(0)-WAVEFRONT 0.93/37 0.81/41 0.97/41 1.14/41 1.94/43

ILU(0)-MULTICOL 0.95/38 0.78/42 0.78/41 0.93/44 1.41/46
SPAI, τ = 0.2 3.57/68 2.04/68 1,41/68 1.55/68 2.22/68
SPAI, τ = 0.4 5.40/194 3.51/194 2.00/201 2.29/211 3.62/204

Table 7: Problem 2 with FDM, N=256x256
p = 4 p = 8 p = 16 p = 32 p = 64

Cpu time/Iterations
MC-BSOR(2) 39.5/3 12.4/3 4.37/3 1.55/4 0.73/4

SSOR-WAVEFRONT 14.63/127 7.86/123 6.26/126 5.95/128 7.54/129
ILU(0)-WAVEFRONT 7.08/73 4.31/80 3.35/76 3.49/83 4.51/82

ILU(0)-MULTICOL 7.11/73 4.12/81 2.87/79 2.39/78 8.22/155
SPAI,τ = 0.2 28.08/141 14.82/141 8.24/141 5.13/141 4.91/141
SPAI,τ = 0.4 41.86/388 24.09/426 11.28/376 7.08/389 7.87/411

Table 8: Problem 2 with FDM, N=512x512
p = 4 p = 8 p = 16 p = 32 p = 64

Cpu time/Iterations
MC-BSOR(2) X X 39.0/3 13.2/4 4.8/4

SSOR-WAVEFRONT X 52.87/237 31.42/232 22.98/239 22.02/244
ILU(0)-WAVEFRONT X 27.00/148 16.93/148 12.41/151 12.19/150

ILU(0)-MULTICOL X 25.95/147 14.25/141 9.68/150 8.21/155
SPAi,τ = 0.2 226.10/282 115.00/285 59.02/281 32.58/285 20.23/279
SPAi,τ = 0.4 345.17/815 172.96/816 86.13/784 44.00/749 30.28/779

Table 9: Problem 2 with FDM, N=1024x1024
p = 4 p = 8 p = 16 p = 32 p = 64

Cpu time/Iterations
MC-BSOR(2) X X X SLOW 42.4/5

SSOR-WAVEFRONT X X X 128.16/471 88.64/459
ILU(0)-WAVEFRONT X X X 61.40/270 46.19/279

ILU(0)-MULTICOL X X X 55.69/285 34.92/289
SPAI, τ = 0.2 X X X 341.54/535 159.33/535
SPAI, τ = 0.4 X X X 442.01/2000 202.47/1724

96 SANGBACK MA

Table 10: ’s3dkq4m2’ from the Harwell-Boeing Collection
p = 4 p = 8 p = 16 p = 32 p = 64

Cpu time/Iterations
MC-BSOR(2) X X X 1286.0/524 457.0/497

SSOR-WAVEFRONT X X X SL SL
ILU(0)-WAVEFRONT X X X SL SL

ILU(0)-MULTICOL X X X SL SL
SPAI, τ = 0.2 X X X SL SL
SPAI, τ = 0.4 X X X SL SL

Table 11: Problem 1 with FDM, N=256x256
p = 4 p = 8 p = 16 p = 32 p = 64

Megaflops
ILU(0)-WAVEFRONT 66 109 149 159 125

ILU(0)-MULTICOL 66 119 184 234 221

Table 12: Problem 1 with FDM, N=512x512
p = 4 p = 8 p = 16 p = 32 p = 64

Megaflops
ILU(0)-WAVEFRONT X 144 243 336 366

ILU(0)-MULTICOL X 149 272 451 595

Table 13: Problem 1 with FDM, N=1024x1024
p = 4 p = 8 p = 16 p = 32 p = 64

Megaflops
ILU(0)-WAVEFRONT X X X 473 683

ILU(0)-MULTICOL X X X 547 943

LARGE NONSYMMETRIC SPARSE LINEAR SYSTEMS 97

Table 14: Problem 2 with FDM, N=256x256
p = 4 p = 8 p = 16 p = 32 p = 64

Megaflops
ILU(0)-WAVEFRONT 78 140 171 179 137

ILU(0)-MULTICOL 77 148 207 246 586

Table 15: Problem 2 with FDM, N=512x512
p = 4 p = 8 p = 16 p = 32 p = 64

Megaflops
ILU(0)-WAVEFRONT X 165 263 366 371

ILU(0)-MULTICOL X 171 298 467 568

Table 16: Problem 2 with FDM, N=1024x1024
p = 4 p = 8 p = 16 p = 32 p = 64

Megaflops
ILU(0)-WAVEFRONT X X X 530 728

ILU(0)-MULTICOL X X X 617 997

98 SANGBACK MA

Figure 3: Speedup of problem 1, N= 512x512

LARGE NONSYMMETRIC SPARSE LINEAR SYSTEMS 99

6 Summary

• Unlike in the symmetric case the convergence rate of the BICGSTAB method
deos not deteriorate at all, compared with the wavefront-order. Hence, due to the
parallelism of order(N) coming from the multi-coloring,for problems tested ILU(0)
with the multicolor ordering outperforms the other preconditioners considered in
this paper. The Multi-Color Block SOR gives the worst performances.

• Seeing from the speedup curves, the communication overheads in the CRAY-T3E
turns out to be very high for the irregularly structured sparse matrices in the
CSR format. One of the reasons is that we are sorting the adjacent processor list
array to avoid deadlocks. For example, in matrix-vector product this causes the
higher numbered processors to wait until all of the lower numbered processors are
done.

• It is an interesting fact on its own that the convergence rate of the BICGSTAB
method in the multi-coloring order does not deteriorate, compared to that of
the natural ordering. In future we might need more research to explain this
phenomenon.

Acknowledgements. The work was supported by Korea STEPI research fund, 97-
NF-03-01-A-03. The author would like to acknowledge the numerous advices of Prof.
Youcef Saad, and also the Korea ETRI, which provided the computer facilities and an
excellent research environment to conduct this research.

References

[1] M. benzi, R. Kouhia, and M. Tuma, “An Assessment of Some Preconditioning Techniques
in Shell Problems”, Communications in Numerical Methods in Engineering, Vol. 14, 1998,
pp. 897-906

[2] D. Boley, B. Buzbee, and S. Parter, “On block relaxation techniques”, MRC Technical
Summary Report # 1860, Mathematics Research Center, University of Wisconsin, 1978.

[3] H. Elman, “Iterative methods for large, sparse, nonsymmetric systems of linear equations”,
Ph. D Thesis, Yale University, 1982

[4] M. Grote and T. Huckle, ”Parallel preconditioning with sparse approximate inverses”, J.
Sci. Computing, Vol. 18, 1997, pp. 838-853

[5] C. -C. Jay Kuo and Tony Chan, “Two-color Fourier analysis of iterative algorithms for
elliptic problems with red/black ordering”, SIAM J. Sci Stat, Vol. 11, No. 4, 1990, pp.
767-793.

[6] J. A. Meijerink and H. A. van der Vorst, “ An iterative solution method for linear systems
of which the coefficient matrix is a symmetric M-matrix”, Math. Comp., Vol. 31, 1977, pp.
148–162.

100 SANGBACK MA

[7] D. P. O’Leary, “ Ordering schmes for parallel processing of certain mesh problems”, SIAM
J. Sci Stat, Vol. 5, 1984, pp. 620-632.

[8] D. Peaceman and H. Rachford, “The numerical solution of elliptic and parabolic differential
equations”, Journal of SIAM., Vol. 3, 1955, pp. 28-41.

[9] Y. Saad, ”Krylov subspace methods for solving large unsymmetric linear systems”, Math-
ematics of Computation, Vol. 37, July 1981

[10] Y. Saad and M. Schultz, “GMRES: A Generalized minimal residual algorithm for solving
nonsymmetric linear systems”, SIAM J. Sci. Stat, Vol. 7, July, 1986

[11] Y. Saad, “Krylov subspace methods on supercomputers”, SIAM J. Sci. Stat, Vol. 10, 1989,
pp. 1200-1232.

[12] Y. Saad, “ILUT: A dual threshold incomplete LU factorization”, Numer. Linear Algebra
Appl.,Vol. 1, 1992, pp.387-402.

[13] Y. Saad, “SPARSKIT: A basic tool kit for sparse computations”, in Iterative Methods for
Sparse Linear Systems, PWS Publishing Company, Boston, 1996

[14] Y. Saad, “Highly parallel preconditioners for general sparse matrices”, in Recent Advances
in Iterative Methods, IMA Volumes in Mathematics and its Applications, Vol. 60, G.
Golub, M. Luskin and A. Greenbaum, eds, Springer-Verlag, Berlin, 1994, pp. 165-199.

[15] R. Varga, Matrix Iterative Analysis, Prentice-Hall, New York, 1962

[16] H. Van Der Vorst, “High performance preconditioning”, SIAM J. Sci. Stat, Vol. 10, 1989,
pp. 1174-1185.

[17] H. Van der Vorst, “BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the
solution of nonsymmetric linear systems”, SIAM. J. Sci. Statist. Comput., Vol. 13, 1992,
pp. 631-644.

[18] D. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.

Department of Computer science
Hanyang University, Sa-1 Dong 1271
Ansan, Kyungki-Do, S. Korea, 425-791
email :sangback@cse.hanyang.ac.kr

