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A PARTIAL PROOF OF THE CONVERGENCE
OF THE BLOCK-ADI PRECONDITIONER

SANGBACK Ma

ABSTRACT. There is currently a regain of interest in ADI (Alternating
Direction Implicit) method as a preconditioner for iterative Method for
solving large sparse linear systems, because of its suitability for parallel
computation. However the classical ADI is not applicable to FE(Finite
Element) matrices. In this paper we propose a Block-ADI method, which
is applicable to Finite Element matrices. The new approach is a com-
bination of classical ADI method and domain decompositi on. Also, we
provide a partial proof of the convergence based on the results from the
regular splittings, in case the discretization matrix is symmetric positive
definite.

1. Introduction

Finite difference or finite element discretizations of the following par-

tial differential equation(PDE)

(1) —(Ki(z,y)us), — (Ka(z,y)uy), + f(z,0)u = g(z,y)
Q=(0,1)x(0,1)
u=0 on 0

with meshsize h = 1/(n + 1) give rise to a linear system
(2) Au=1b

of order N = n x n, where the the matrix A is a sparse matrix. The
matrix A is nonsymmetric due to the presence of the terms of first order
derivatives. In particular, we call the problem of the Laplace equation
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on a square with Diri chlet boundary condition the model problem. For
throughout this paper we assume that the underlying PDE is positive. In
case of finite difference method(FDM) with standard central difference
for the first-order derivatives, we can split A = H+ V + X, where H and
V comes from the discretizations in z and y directions, respectively, and
¥ comes from the term f in Eq. (1). Let A be the matrix obtained by the
standard 5-point finite difference operator with the unknowns ordered
in the natural ordering. Then, a block tridiagonal matrix is obtained, H
is a tridiagonal matrix, and V is a block tridiagonal matrix.

For Eq. (2) we decompose A asA = Hy + Vp + ¥ , where ¥ comes
from the fu component, and Hy, Vy are the contributions from the z,
and y directional derivatives, respectively. With H = Hy + %E and
V = Vy + 3 I, PR2-ADI(Peaceman-Rachford ADI) method is defined by

(3) (HA+pil)uiq1/2=—(V —pil)u; + b
(4) (V+piluiys =—(H — pil)ujp10+6, 120,

where ug is an arbitrary initial vector approximation of the solution
of Eq. (1), and {p;, ¢ > 0} are positive constants called acceleration
parameters, which are chosen to speedup the convergence of this process.
Each of Eq. (3) and (4) form n sets of linear system of order n where the
n linear systems are completely decoupled. Furthermore, the matrices H
and V could be made tridiagonal with proper reordering. For example,
under natural ordering in ¢ direction H is tridiagonal, and with natural
ordering in y direction V could be made tridiagonal. This ensures a
minimum degree of parallelism of n, which makes PR2-ADI attractive in
parallel computations. Also we note that Gaussian elimination method
for the tridiagonal linear systems is very effective in terms of costs.
We combine Eq. (3) and Eq. (4) into the form

(5) Uip1 = Tp.‘ u; +v 1 >0,

where

(6) Ty, = (V+pid) " (pi — H)H + pid) (0 = V),
and

(7) v=(V+pD) " {(pi— H)(H + pI)” +1I}b.
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We call T, the Peaceman-Rachford matriz. If ¢; = u; — u is the error
at the i-th iteration, then €,4; = T,¢;, and in general

j=i
(8) € = H Tp_,‘ €0, ? .>_ 13
j=1
where
j=i
(9) T, | =TpTpi, .- Ty,
i=1

As for the convergence of Peaceman-Rachford iteration, we first consider
the stationary case, where all the constants p; are equal. Then we have
the following theorem[Va62].

THEOREM 1.1. Let H and V be N x N Hermitian non-negative def-
inite matrices, where at least one of the matrices H and V is positive
definite. Then, for any p > 0, the stationary PR2-ADI iteration is con-
vergent.

The above result still holds true without the assumption that H and
V commute, i.e, HV = VH. This is very crucial, since the condition
that H and V commute is a very str ingent one. Actually, it dictates
that the underlying PDE which gave rise to the matrix is separable, i.e,

(10) K]('Tv y) = I"l(mayO),Vya KZ(xay) = A’Z(an y),VIE
and
(11) d((l?,y) = d(wa yO)v Vya 8($>y) - 8(1'07y)av‘73

2. Block versions of ADI

Since H and V depend on the finite difference discretizations of origi-
nal PDEs, the classical ADI is not defined for FE matrices. For example,
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the piecewise linear shape functions on triangles give rise to 7-point ma-
trices, for which there is no natural splitting of A into the sum of two
matrices H and V that are both tridiagonal, or defined discretizations
of one-dimensional operators. The question then arises as to how to
generalize the classical ADI for Finite Elements applications. There are
several options available. Here we propose a technique which is based
on recasting the Peaceman Rachford ADI in the framework of Domain
Decomposition methods.

2.1. The classical ADI and Domain Decomposition

In the classical ADI of Eq. (3) and (4), H is the discretization ma-
trix of z-directional derivatives. In terms of domain decomposition the
domain is decomposed into horizontal lines. Then H is obtained by
applying the original PDE on the subdomains, while imposing the Neu-
mann boundary conditions between the vertical lines. Similarly for V.
After H and V are found we could write A as

A=H+(A-H)=V +(A-V).

These two splittings of A are used in each of two stages of the iteration
(3). A parameter p; was added to the diagonals of H and V as a relax-
ation parameter. In other words ADI can be viewed as an extreme case
of domain decomposition in the plane, where the subdomain consists of
nonoverlapping horizontal rectangles consisting of one line each. We can
also view ADI as a means of using a domain decomposition strategy to
reduce two-dimensional domains into one-dimensional subdomains. By
alternating between the x and y directions we can achieve the overlap-
ping between the domains that is desirable in domain decomposition. As
we noted earlier in domain decomposition the convergence deteriorates
if the number of subdomains increases and there is no overlap between
the subdomains. By the alternation we hope to achieve the equivalent
effect of overlapping subdomains.

2.2. A Block ADI Algorithm

We have seen in the previous discussions that the two stages of the
classical ADI are characterized by the way in which the matrix A is split
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in two additive components. It is natural to think of considering the
subdomains of horizontal/vertical strips consisting of a few, say k, lines,
instead of just one line. The same procedure as in the classical ADI can
then be defined. Let us call ADI(k) this variant of ADI, and let H(®*)
and V(*) denote the matrices obtained by applying the original PDE on
this decomposition of the domains. In essence, for each of the two do-
main partitionings, these matrices are obtained from the original matrix
by neglecting the interactions between grid points across interfaces, or
rather replacing them with Neumann boundary conditions. Then A4 is
split as
A=H® 4 (4- H®) =v® L (4~ v,

From this we can define our block ADI procedure, denoted by ADI(k).
ALGORITHM 2.1. ADI(k)

(12) (H® 4 piDuiyrj =—(A— H® — pilNu; +b
(13) (V® 4 pilyuigs = — (A= V® — piDuipyyp + b

In the case of model problem with N =4 x 4 grid H () is as follows.

2 c® 0
H()_( Vo

where

0
o 0 -1 0 0 -1 3 -1
o o 0 -1 0 O -1 31

But for k > 1 H® and V(¥ no longer commute even for the Laplace
equation, and no longer A = H(F) +V () is true. These make the analysis
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very di flicult, since we can neither write out the spectral radius in terms
of the eigenvalues. However, as k increases H®*) and V(¥ get closer to
A. In terms of the Frobenius norm

(15) NA-HP|p < |A-H|r JA-VPlp < [|A=V]p.k>1

where ||A||F denotes the Frobenius norm of the matrix defined by

(16) lAlF* =" ai s

This leads us to expect that the Block ADI(k) iteration will also con-
verge. In fact when p is sufficiently large and H(*) and V%) are sym-
metric for all k, we have the following result. First, we recall that a
matrix A is called a Stieltjes matrix if it is symmetric positive definite
and a;; < 0 for ¢ # j. We denote by Sp(A) the spectral radius of A.
Then, we have the following theorem[Va62].

THEOREM 2.1. Let A = M, — N, = M, — N, be two regular splittings
OfA, where A7 > 0. If Ny > Ny > 0, Ny >0,V 7& Ny, then

(17) 0 < Sp(M,71Ny) < Sp(M;INy) < 1.

PROPOSITION 2.1. Let A~! ; 0 and suppose p is large enough so that
(pill —H) >0, (p;I - V) >0, and H® and V¥ are Stieltjes matrices.
Then, we have

0 < Sp(H® + o)™ (pil = (A= HO))

(18) < Sp((H +pi)7H(pid - V) < 1,
0 < Sp(V® 4 o) (pu = (A= VD))

S Sp((V+pid) Hpd —H)) < 1.

ProoF. If H®*) and V(¥ are Stieltjes matrices then H*) + p:l and
V() 4 p.I are M-matrices ([Va62] ). Also, (pil — (A — H®)) > (p,I —
(A—H))=(pl —V)>0. Then, A= (H + p;I)— (p;] —(A— H)) =
(H® 4 p.I) — (pi] — (A - H®))) are regular splittings. Then, with
the theorem 2.1 the result foll ows. Similarly, for V¥,

For k > 1 we have,
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COROLLARY 2.1. Assume that the matrix A resulting from the dis-
cretization of the original PDE is Stieltjes matrix. If p is sufficiently
large then the stationary ADI(k) iteration will con verge.

PROOF. The hypothesis implies that A, H*) and V(*) are symmetric.
We need to show the spectral radius of

(19) T = (VO 40, 1) (A=V® —p, Y HP +p, 1) (A-H® —p;I)
is less than 1. Using the symmetry of A, H(*¥) and V()
k

Sp(T)
<IVE + ) HA=VE — o I(HD + o, 1) (A= H® - pI)|I2
<NVE + o)A = VD — D)o |(HP + pi)7H (A - HP = piI) 5
=Sp(V + pi)™H (A= VP — pD))

Sp(H® + pi) " (A— H® — p,I))
<1, by proposition 2.1 O

If H® and V® come from FEM discretizations on the subdomains
consiting of k horizontal/vertical lines, H*) and V{(*) are Stieltjes matri-
ces. Also, if the matrix A is obtained by standard FEM discretizations
with piecewise lin ear functions on triangle elements, A is irreducible and
Stieltjes matrix, hence A~ > 0, by corollary 3 in page 85, of [3]. Then,
with the model problem if p > 1 the hypothesis of the proposition 2.1 is
satisfied, hence the ADI(k) method for the FEM will converge.
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