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PARALLEL PERFORMANCE OF MULTISPLITTING
METHODS WITH PREWEIGHTING

Yu Du HAN AND JAE HEON YUN

ABSTRACT. In this paper, we first study convergence of a special type
of multisplitting methods with preweighting, and then we provide some
comparison results of those multisplitting methods. Next, we propose
both parallel implementation of an SOR-like multisplitting method with
preweighting and an application of the SOR-like multisplitting method
with preweighting to a parallel preconditioner of Krylov subspace method.
Lastly, we provide parallel performance results of both the SOR-like mul-
tisplitting method with preweighting and Krylov subspace method with
the parallel preconditioner to evaluate parallel efficiency of the proposed
methods.

1. Introduction

In this paper, we consider multisplitting methods with preweighting for solv-
ing a linear system of the form

(1) Az =b, =z,beR",

where A € R™*" is a large sparse H-matrix.

For a vector x € R™, > 0 (z > 0) denotes that all components of x
are nonnegative (positive), and |z| denotes the vector whose components are
the absolute values of the corresponding components of x. For two vectors
z,y € R", >y (x >y) means that t —y > 0 (z — y > 0). These definitions
carry immediately over to matrices. For a square matrix A, diag(A) denotes
a diagonal matrix whose diagonal part coincides with the diagonal part of A.
Let p(A) denote the spectral radius of a square matrix A. Varga [11] showed
that for any two square matrices A and B, |A| < B implies p(A) < p(B).

A matrix A = (a;;) € R"*™ is called monotone if A is nonsingular with
A~ > 0. A matrix A = (a;;) € R"*" is called an M -matriz if it is a monotone
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matrix with a;; <0 for i # j. The comparison matriz (A) = (c;) of a matrix
A = (ai;) is defined by
i
- { Jagg| i i =,

—|CLij| if 4 75 j

A matrix A is called an H-matriz if (A) is an M-matrix.

A representation A = M — N is called a splitting of A if M is nonsingular.
A splitting A = M — N is called regular if M~1 > 0 and N > 0, and it is
called weak regular if M—1 > 0 and M~'N > 0 [1]. It is well known that
if A = M — N is a weak regular splitting of A, then p(M~!N) < 1 if and
only if A=t > 0 [1, 11]. A splitting A = M — N is called an H-compatible
splitting of A if (A) = (M) — |N|. It was shown in [5] that if A is an H-matrix
and A = M — N is an H-compatible splitting of A, then p(M~1N) < 1. A
collection of triples (Mg, Ny, E), k =1,2,...,¢, is called a multisplitting of A
if A = My, — Ng is a splitting of A for k =1,2,...,¢, and E}’s, called weighting
matrices, are nonnegative diagonal matrices such that Zizl Ey=1.

Lemma 1.1 ([2]). Let A= >0 and A = My — Ny = My — Ny be weak regular
splittings. In either of the following cases:

(a) N1 < Ny,

(b) My™' > My~ Ny >0,

(¢) Mi™" > My™" Ny >0,

the inequality p(Ml_lNl) < p(My™'Ny) holds.

The multisplitting method with postweighting which is usually called the mul-
tisplitting method has been extensively studied in the literature, see [3, 4, 6, 7,
10, 12, 14, 15]. However, the multisplitting method with preweighting has not
been studied extensively, see [4, 13]. This is the main motivation for studying
convergence of multisplitting method with preweighting.

This paper is organized as follows. In Section 2, we first study convergence
of a special type of multisplitting methods with preweighting, and then we
provide some comparison results of those multisplitting methods. In Section 3,
we propose both parallel implementation of an SOR-like multisplitting method
with preweighting and an application of the SOR-like multisplitting method
with preweighting to a parallel preconditioner of Krylov subspace method. In
Section 4, we provide parallel performance results of both the SOR-like mul-
tisplitting method with preweighting and Krylov subspace method with the
parallel preconditioner to evaluate parallel efficiency of the proposed methods.
Lastly, some concluding remarks are withdrawn.

2. Convergence of multisplitting methods with preweighting

Let (Mg, Nk, Ex), k= 1,2,...,¢, be a multisplitting of A. Then the corre-
sponding multisplitting method with preweighting for solving Az = b [13] is
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given by

Tiv1 = Hox; + Gob
=z, +Go(b— Ax;), 1 =0,1,2,...,

4
(3) Go=Y My 'Ey and Ho=1-GoA.
k=1

Hy=1- Zi:l M 'E,A is called an iteration matrix for the multisplitting
method with preweighting. Notice that then H = I — Zf;zl E, M, 1A is called
an iteration matrix for the multisplitting method. By simple calculation, one
obtains

Hy' = AT (I - i:Ek(MkT)_lAT> (AT)=L,
k=1

Let H = 1= Bp(MT) 2 AT = S0 B (M) N, T, Then H is similar
to HoT and hence p(Hy) = p(H). Notice that H is an iteration matrix for
the multisplitting method corresponding to a multisplitting (My”, Ni.T, Ey),
k=1,2,...,¢, of AT. Hence, convergence result of multisplitting method with
preweighting corresponding to a multisplitting of A can be obtained from that
of multisplitting method corresponding to a multisplitting of AT.

The multisplitting method with preweighting associated with a multisplit-
ting (Mg, Ni, Ey), k = 1,2,...,£, of A for solving the linear system (1) is as
follows:

ALGORITHM 1: MULTISPLITTING METHOD WITH PREWEIGHTING
Given an initial vector xq
For ¢« =0,1,..., until convergence
For k =1 to £ {parallel execution}
Myyr = Ep(b— Axy)
Tiv1 =T+ Yoy Un

We first consider the multisplitting method with preweighting corresponding
to a special type of multisplitting (M, Ng, Ex), k =1,2,...,1, of A which was
first introduced by White [13] and studied further by Frommer and Mayer [4].
Let’s assume that ¢ = 3 for simplicity of exposition. Then A is partitioned into

Ay —Ci2 —Ci3 —Cuy
—Co1  As —Co3  —Cy
—C31 —C3 Az O3]’
—Cy1 —Cyp —Cy3 Ay

4) A=
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where A;’s are square matrices. Let Ay, = By —C} (1 < k < £+1) be a splitting

YU DU HAN AND JAE HEON YUN

of Aj. Let
B 0 0 0 I 00 0
|l 0 By 0 0 oo 0 o0
My = 0 0 By 0 Ex=10 0 0 o0
—-Cn 0 0 By 0 0 0 el
B, 0 0 0 000 0
o B 0 o0 o1 0 o0
(5) M=1o 0 By 0 B2=10 00 o0
0 —Cp 0 By 0 0 0 el
B, 0 0 0 000 0
o B 0 0 oo 0 o0
Ms=14 o B; 0 Es=10 01 o
0 0 —043 B4 0 0 O 63[

Ny =M, —A (1<k<3),

where Zizl er = 1. Using this multisplitting (M, Ni, Ex), k =1,2,...
A, Gy and Hj are of the form

A, of

14
Go=)Y M, 'E
k=1

B! 0 0 0
_ 0 Byt 0 0
(6) - 0 0 Byt o |’
By 'CyuBi™' By 'CueBy™' By 'CsBym' Byt
BfllCl Bfllcu B171C13 B171C14
By7"Cy1 By "Cy By "Caz By Cn
Ho=I-GoA= B3 'Cs1 B3 'Cs B37'Cs By 'Cau |’
B1 B2 B3 Ba
where
¢
B = Z B4_1C47kBk_1Ck7i—|—B4_1C4,iBi_1Ci for i=1,2,...¢,

k=1,k#i
¢
By = Z By 'CypBy ' Cra+ By ' Cy
k=1
The following theorems are convergence results of multisplitting method
with preweighting corresponding to the multisplitting of the form (5) when A
is a monotone matrix or an H-matrix.

Theorem 2.1 ([13]). Let A= > 0 and (Mg, Ny, Ex), k = 1,2,....¢, be a
multisplitting of A with My, Ny and Ey defined as in (5). If Ay = By — C
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is a weak regular splitting of A, and Ci; >0 (1 <i,j,k <L+ 1, i # j), then
Hy >0 and p(Ho) <1, where Hy =1 — Y%, My ' E,A.

Theorem 2.2 ([4]). Let (My, Nk, Ex), k =1,2,...,¢, be a multisplitting of A
with My, Ny and Ej defined as in (5). If A is an H-matriz and Ay, = By — C,
is an H-compatible splitting of Ay, fork =1,2,...,0+1, then p(Hy) < 1, where
Ho=1-Y"'_ My 'EA.

The following theorem provides a convergence result of the AOR-like multi-
splitting method with preweighting of the form (5) when A is an H-matrix.

Theorem 2.3. Assume that A is an H-matriz with A = D — F, where D =
diag(A). Let (Mg, Ny, Ey),k = 1,2,...,£, be a multisplitting of A with M,
Ny and Ey, defined as in (5), where for k=1,2,... . 0+1

(7) By = %(Dk — ’}/Lk), Cy = % ((1 — w)Dk + (w—7)Li + ka) ,

Dy, = diag(Ag), Ly is a strictly lower triangular matriz and Vi is a general
matriz satisfying Vi, = Dy — L — Ak. If0 < v < w < 14%& and (Ag) =
|Di| — |Li| — |Vi| for k = 1,2,...,0 + 1, then p(Hy) < 1, where Hy = I —

S M ELA and o = p(|D|7Y|F)).
Proof. Since (Ag) = |Dg| — |Li| — |Vk|, the corresponding coefficients of (w —

)L and wVj have the same signs for k =1,2,..., £+ 1. We first consider the
case where 0 < v < w < 1. From (7), one obtains for k =1,2,...,¢+1

(Bi) =104 = (= (D = 7La) = 1= (1 =)Dy + (= ) Li + Vi)

1 1
;(|Dk| —y|Lx]) — " (1 = w)[Dg| + (w = )| Li| +w|Vi|)
= |Dg| — [Lg| — [Vi| = (Ag).
Hence, Ay = By — Cf is an H-compatible splitting of Ay for k=1,2,..., 0+ 1.
By Theorem 2.2, p(Hp) < 1 for 0 < v < w < 1. Next we consider the case

where 1 < w < 1fa and vy <w. For k=1,2,..., 041, let

~ 1
Cyr = 5 (W=1)Dg + (w—7)Lg +wVi),

A~k = Bk — C~k.
Then, it can be easily seen that for K =1,2,..., 0+ 1,
2—w

Ay = ~——Dg — Ly = Vi
Let A = 29D — F. Then (A) = 2=|D| — |F| is a regular splitting of (A).
Since 1 < w < H%’ p(ﬁ|D|_1|F|> = 52% < 1. It follows that (A1 >0
and thus A is an H-matrix. Since Ay = Dy — Ly — Vi, Ay = 2_T‘”Dk — L — Vg,
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which is a block diagonal component of A. Clearly, Ay is an H-matrix for
k=1,2,...,f/+ 1. Notice that for k =1,2,...,0+1,

(Bi) — |Gl = (1D&] ~ 2 Eel) — = (&~ DIDgl + (= 1)Ll + wlVil)

2 —w -
== |Di| = [Li| — [Vi| = (Ag).

Note that (A) can be written as

(A1) —|Ciol - —|Cret]
. —[Ca 1| (As2) o —|Ca 4]
(4) = : : .- :
—[Cry11] —|Cryr2| -+ <Az+1>
For k=1,2,...,¢, let
(By) - 0 0
My=] 0 (By) 0 and Nj, = M — (A).
: 0 . :
0 - —[Coprk] -+ (Begr)

Then (]\gk,]\?k,Ek), k =1,2,...¢, is a multisplitting of (A) of the form (5).
Since (A)~t > 0 and (Ax) = (By) — |Cy| is a regular splitting of (Ay) for
k=1,2,...,0+1, p(Hp) <1 from Theorem 2.1, where

(B)) Ci|  (Bu)7YCua| - (Bi)7MCue (Bi)7HChe
(B2)7MCaul  (Ba)MCo| -+ (Ba)MCaul (B2)'Co ey
do=| . ; ,
(Be) MCral (Bo) HCpa| -+ (Bo) MCil  (Be)Crepl
Bl 32 Bf BZ+1
4
B = (Bes1) T Okl (Br) ™M Cnil + (Bes1) "M Coril (Bi) ICil
k=1 ki
(1<i<o),
L
Besr =Y (Bes1) M Cor | (Br) M Cresa| + (Bega) "M Co .

=

=1
Since By, is an H-matrix for 1 < k < £+ 1, one obtains
|Br, 7' < (Br)™' and |Ci| < |Chl.

Using these inequalities, |Hy| < Hy is obtained. Thus, p(Hy) < 1 for 1 < w <

14—% and v < w. Therefore, p(Hp) < 1for 0 <7y <w < H% =
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If v = w in Theorem 2.3, then Theorem 2.3 reduces to a convergence result
of the SOR-like multisplitting method with preweighting of the form (5).

Definition 2.4. A = M — N is called an SSOR-like splitting of A if

1 D
M = m(D —wL)D™Y(D —wV),
1

N=le—w

(1 -w)D+wL) D' (1 —w)D +wV),

where 0 < w < 2, D = diag(A), L is a strictly lower triangular matrix and V'
is a general matrix satisfying V=D — L — A.

The following example shows that the SSOR-like splitting of an H-matrix
A =D —L-V such that (4) = |D|—|L|—|V] is not an H-compatible splitting
of A.

Example 2.5. Let A=D — L —V be a 2 x 2 matrix defined by

2 -3 2 0 0 0 0 3
S o B O e C R A C )
It is clear that (A) = |D| — |L| — |V|. Since (4)~! > 0, A is an H-matrix. By
simple calculation

M=(D-L)DYD-V)= (; _53> ;

2

It follows that

on=(2 F)owi= (0 9). an-wi=(% 7).

Note that A = M — N is an SSOR-like splitting of A with w = 1. However,
(M) — |N| # (A), which shows that A = M — N is not an H-compatible
splitting of A.

The following theorem provides a convergence result of the SSOR-like mul-
tisplitting method with preweighting of the form (5) when A is an H-matrix.

Theorem 2.6. Assume that A is an H-matriz with A = D — F, where D =
diag(A). Let (Mg, Ny, Ey),k = 1,2,...,L, be a multisplitting of A with M,
Ny, and Ey, defined as in (5), where
1
Bp=—
b w(2 —w)
®) 1

RCE)

(Dy, — wLg) Dy~ (D — wWy),

((1 — w)Dk + ka)Dk_l ((1 — w)Dk + ka),
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Dy, = diag(Ayg), Ly is a strictly lower triangular matriz and Vi is a general

matric satisfying Vi = D, — Ly — Ag. If0 <w < 1_%& and (Ag) = |Dy|—|Li| —

|Vi|, then p(Ho) < 1, where Hy =1 — Zi:l M 'E,A and a = p(|D|7}|F)).
Proof. We consider the first case where 0 < w < 1. From the assumption, one
obtains for k =1,2,..., 041,

(Ag) = (|IDk| = w|Li )| Dx| 1 (| Di| — w|Vi])

w(2 —w)
1

- m((l — w)|Di| + w|Li]) [De| 7 (1 = w) [ Die| + w|Vil).

Fork=1,2,...,0+1, let

b
w(2 —w)

Gie = ﬁ((l = w)| D] + w|Li|) [ D] 7 (1 = w) [ Di] + wlVil).

By, = (IDk| = w| L) Di| = (|1 Di| — w|Vi|),

Then (Ay) = By, — C, is a regular splitting of (Ag) for k=1,2,...,£+ 1. Let
fork=1,2,...,¢,

By 0 0

Mk = 0 Bk 0 and Nk = Mk — <A>
: 0 .
0 - —|Cirxl -+ B

Then (]\Z;C,]\Nflc,Ek)7 k=1,2,...,¢ is a multisplitting of (A) of the form (5).
Since (A)~! >0, p(Hp) < 1 from Theorem 2.1, where

Br'Cr B{YCial o+ BUYCwLd BrYCuenl
By Con|  By'Cy -+ Byt[Cau| By 'Cheqal

)

Bé_1~‘0&1| BZ_1JC[72 Be_jég Be_1~|C@,g+1|
61 /82 T ﬂ[ /Bé-i-l

V4
Bi= Y BihlCerial B Cuil + B Ol By MG (1< i < 0),
k=1,k#i
~ e ~ ~ ~ ~
Bor1 =3 By |Coianl B Crga| + Bl Coa.
k=1
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Since Ay, is an H-matrix, D, — wlL; and Dy — wV) are H-matrices for k =
1,2,...,¢+ 1. Hence one obtains
(D —wLi) ™| < (IDg| = wl|Le) ™",
(D = wVi) ™' < (IDk] = w7,
|By ' < B! and |Cy| < Cy.
Using these inequalities, |Hy| < H, is obtained. Therefore, p(Hp) < 1 for

0 < w < 1. Next we consider the case where 1 < w < 14% Let

Cio= g (@ = DD+ AL DIDL ™ (@ = DIDH] + 1),

Then one obtains for k =1,2,..., ¢+ 1,

~ A w 2—w
B- o= 32 (22 mul - - 1)

2—-w
Let A= |D| - 5%~ |F| and Ay, = 22¢|Dy| — |Ly| — |Vi| for k =1,2,..., 0+ 1.
Then A = |D| — —|F| is a regular sphttmg of A and 5 Ak = Bk — Cy.
Since 1 < w < 2, p(|D| L |F|) s p(|D|- 1\F\) — #e <1 Thus,
A1 > 0. Note that A can be written as
T T e
i —53251Ca1| 2%07142 *Q%W'ICQM
—555|C1al —5%5 525 A
Let for k=1,2,...,¢,
By - 0 0
Mi=1|o0 By, 0 and Nj = My — A.
; 0 S
0 - =52 |Crinl - Ben

Then (M,:,Nk,Ek) k=12...,0 is a multisplitting of A of the form (5).
Since ¥~ Ak =B, —Ciisa regular splitting of 5 Ak fork=1,2,...,0+1,
p(HY) < 1 from Theorem 2.1, where
Zepie Byt B Crel By G
By Con| 2 WBz Gy - BylCod By |C2 e+1]
w
Hf = —— : : - : :
P2-w 1 51 . Bl Bl 7
B, |Ceal By |Ce,2| o EEBCe By |CM+1|
ICh B3 B; Bt
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¢
w & = & 5—1 A .
i — Y BihCeawl By Cril + B Conal BTG (1< i <),
Y k=1 ki
w . - 2—-w ~
Bl =50 B4 Co k1 By Crypgn | + TBZJ:1CZ+1-
k=1
Since |B; | < B; Y, |Ck| < Cy and 52— > 1, |Ho| < Hy is obtained. Thus,
p(Hp) <lforl<wc< H% Therefore, p(Hp) < 1 for all 0 < w < H% O

We next provide comparison results for multisplitting methods with prewei-
ghting of the form (5) when A is an M-matrix.

Theorem 2.7. Assume that A is an M-matriz. Let (My, N, Ex), k=1,2,...,
¢, be a multisplitting of A with My, Ny and Ey defined as in (5), where By, =
%(Dk — TLk), Ck = %((1 — W)Dk + (w — T‘)Lk + OJVk), Dk = diag(Ak), Lk 8
a nonnegative strictly lower triangular matrixz and Vi is a nonnegative matriz

satisfying Vi, = Dy, — Ly, — Ay fork=1,2,... £+ 1. Let
1 1
Maor = ;(D —rL), Naor = a((l —w)D+ (w—7)L +wU),

1 1
Mj;=—D and NJ:—((l—w)D+wL+wU),
w w

where D = diag(A), —L is a strictly lower triangular part of A and —U is a
strictly upper triangular part of A. If 0 <r <w < 1, then

p(Maor™'Naor) < p(Ho) < p(M; 'Ny) <1,
where Gy = Zizl Mk_lEk and Hy =1 — GyA.

Proof. Without loss of generality, we can assume that ¢ = 3. Let Ay = Dy, —
Li, — Uy, where L, is a strictly lower triangular part of A, and Uy is a strictly
upper triangular part of Aj. It can be easily seen that Lj > Lj and Vj, > Uy.
Since Gy = Zizl M,;lEk is nonsingular and Hy = I — G4, A = Gyt —
Go 'Hy. Let B=Gy ' and C = Gy 'Hy. Then A = B—C and Hy = B~!C.
Since By' >0, Cy > 0and Cj; > 0 for i, j, k =1,2,...,0+1,i#j, M "' >0
and thus Gy > 0. Notice that Gy, B and C can be written as

B! 0 0 0
_ 0 Byt 0 0
(10) By 'CyuBi™' By 'CpBy™' By 'Cu3BsT! ByTU
By 0 0 0 Ci1 Cip Ciz3 Cu
B 0 B, 0 0 - Ca1 Cy Caz Oy
0 0 Bs 0|’ C31 Czp C3 O3y |’

where C; = 1=2D; + “="L; + V; for 1 < i < 4. It can be easily seen that

w

C > 0. Hence, we obtain A = B — C is regular splitting of A. By hypothesis,
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Naor and Nj can be written as

Dy Ciz2 Ciz Cu D, Ciz Ci3 Cuy

0 Dy Co3 Cn Co1 Dy Coz Cyn
11) Nion = ’ Ny = k ,
(11) AOR 0 0 D3 Cs ! Cs1 C32 D3 Oy

0 0 0 D4 041 042 043 D4

where Dl = I_Tle + w—rEi + Ul and Ez = I_Tle + El + UZ for i = 1,2,3,4.

w

By assumptions, 0 < “=* <1 and L; +V; = L; + U, for 1 <i < 4. Hence

w—=r w—-=r

Li+U; = » (Li + Vi = Ui) + U
a2 :w;TLﬁw*T(V,;fUi)+Ui
<L (Vi) + U= 2L+ v
<Li+Vi=Li+U.
From (10), (11) and (12), one obtains
(13) Nyor < C < Ny.
From (13) and Lemma 1.1, one obtains,
p(Maor™"Naor) < p(Ho) < p(M;~'Ny) < 1. 0

In Theorem 2.7, MAOR_lNAOR and MJ_lNJ are the iteration matrices for
the AOR method and the relaxed Jacobi method, respectively. Also notice
that Hy is an iteration matrix for the AOR-like multisplitting method with
preweighting of the form (5).

Theorem 2.8. Assume that A is an M-matriz. Let (My, Ny, Ex), k=1,2,...,
¢, be a multisplitting of A with My, Ny and Ej defined as in (5), where
1 1

(14) B = ;(Dk — ka), Cr = 5 ((1 — w)Dk +wWy),

Dy, = diag(Ag), Lk is a nonnegative strictly lower triangular matriz and Vi
is a nonnegative matriz satisfying Vi, = Dy, — Ly — Ag for k =1,2,... £+ 1.
Let (My, Ni, Ex), k=1,2,... £, be a multisplitting of A with My, Ny and Ey
defined as in (5), except that By and Cy, are used instead of By and Cy,

_
w(2 —w)
_
w(2 —w)
If0<w<1, then

Bk = (Dk — ka)Dk_l(Dk — ka)’
(15)
Cr = (1 —w)Dg +wLy) Dyt (1 — w) Dy, +wVy) .
p(Ho) < p(Ho) < 1,
where Gy = Zi:l M,;lEk, Hy = I — GoA, Gy = Zi:l M,;lEk and Hy =
I — GoA.
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Proof. Without loss of generality, we can assume that £ = 3. From (14) and
(15), it is easy to show that B, ' > 0 and B, ' > 0 for k = 1,2,...,¢+ 1.
Hence, Gg > 0 and Gy > 0. Since Gy and G| are nonsingular,

(16) A=Gy' =Gy Hy =Gyt — Gy ' Ho.

Then we have

Bf* 0 0 0 B/ 0 0 0
| o By' 0 0 - | o ByY o 0

(I7) Go=| 0 Bt 0 |’ Go=1| 0 By' o0 |’
a1 az  az Bt ar @ as Byl

where «o; = BZICMBZ._l and &; = 34_1047143;1 for i =1,2,3. Since Dy — wV}
is an M-matrix and Dy — wVp < Dy, D,;l < (Dy — wVi)~!. Hence, I <
(Dk — ka)_le. It follows that

B ' < w(Dy, — wVi) "' Dp(Dy, — wLy) ™!

(18) < w(2 - w)(Dk — ka)ile(Dk — ka)71 = Bk_l

From (17) and (18), Gy < Go. Since (16) are regular splittings of A, from
Lemma 1.1 p(Hy) < p(Hp) < 1. O

In Theorem 2.8, H, and Hy are the iteration matrices for the SSOR-like mul-
tisplitting method with preweighting and the SOR-like multisplitting method
with preweighting of the form (5), respectively.

3. Parallel implementation and application of multisplitting
method with preweighting

In Section 2, we have studied convergence of a special type of multisplitting
methods with preweighting for solving the linear system (1). In this section,
we only introduce parallel implementation and application of the SOR-like
multisplitting method with preweighting of the form (5) since those for other
multisplitting methods with preweighting of the form (5) can be done simi-
larly. We first propose a parallel implementation of the SOR-like multisplitting
method with preweighting of the form (5). Let ¢ denote the number of proces-
sors to be used. For simplicity of exposition, we assume that £ = 3. Then, A
is partitioned into a 4 x 4 block of the form

Ay A Az Ay
Aoy Ay Az Aoy
Az Azp Az Asy
Ap Ay Az Ay

(19) A=

where the diagonal blocks A; of A are square matrices. Let A; = D; — L; — U;
(1 <i<4), where D; = diag(A;), and L; and U; are strictly lower triangular
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and strictly upper triangular matrices, respectively. Let
By 0 0 0 By 0 0 0
_ 0 By O 0 10 By 0 0
Mi=149 By 0|’ M=o g By 0|’
(20) Ay O 0 By 0 Ap 0 By
By 0 0 0
|10 By © 0 _ _
MS_ 0 0 B3 0 ) Nk?_Mk? A(lgkg?))a
0 0 As3 By
where B; = %(Dz —wlL;) for 1 <i<4and w> 0. Let
(21)
I 0 0 O 0 0 0 O 00 0 O
0 0 0 O 0 I 0 O 00 0 O
Er=lo 00 o™= |ooo o] ®»=|oor1 ol
0 0 0 el 0 0 0 eof 0 0 0 esl

where Zle e; =1lande; >0for 1 <i </ Then it is clear that (M, Nk, Ex),
k=1,2,3, is a SOR-like multisplitting of A. Hence, the SOR-like multisplitting
method with preweighting is given by

Tiv1 = Hox; + Gob

(22) =z; + Go(b — Ami),

1=0,1,2,...,
where Go = Y 5_, My 'Ej, and Hy = I — Gy A.
Making use of (20) to (22), the multisplitting method with preweighting can

be executed in parallel as follows.

ALGORITHM 2: PARALLEL IMPLEMENTATION OF MULTISPLITTING

METHOD WITH PREWEIGHTING

Choose an initial vector xq

For ¢ =0,1,2,..., until convergence
For k = 1 to ¢ {parallel execution on ¢ processors}

rF) = pk) — A(F) g,
For k =1 to ¢ {parallel execution on ¢ processors}
(a2)  solve Byt®) = r®) for ¢()
(a3) solve Bg+1t§f+1) = eprth) — Ag+17;€t(k) for t,(fﬂ)
Compute t¢+1) = Zi:l t,(fH) in parallel
For k =1 to ¢ {parallel execution on ¢ processors}

(ad) 2y =+

In Algorithm 2, the superscript (k) means the kth block of a vector and the kth
row block of a matrix. In (al) and (ad), all vectors and matrices are divided into
¢ blocks of equal sizes. In (a2) and (a3), all vectors and matrices are divided

into (¢ + 1) blocks. To obtain good load balancing among the processors, the

(al)
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first ¢ blocks are divided into equal sizes and the size of the last (£ + 1)th block
is chosen to be small compared to the first ¢ blocks.

Next, we propose an application of the SOR-like multisplitting method with
preweighting to a parallel preconditioner of Krylov subspace methods such
as BiCG, GMRES, BiCGSTAB and so on [9]. If the SOR-like multisplitting
method with preweighting converges, then p(Hy) < 1 and thus GoA =T — Hy
is nonsingular. It follows that

A = (I —Hy) *Gy = Z(HO)iGO.
=0

Let P, = Zf;& (Ho)'Gy, where s > 1 is an integer. Since lim,_,o, Py = A7
P, can be viewed as an approximate matrix for A=, Hence, P, can be used as
a preconditioner of Krylov subspace methods. In other words, Ax = b can be
transformed into either APsy = b or PsAx = ¢, where y = P, 7'z and ¢ = P,b.
From now on, the preconditioner Py is called the s-step preconditioner of A.

One of the main computational kernel of Krylov subspace methods with the
preconditioner Py is a preconditioner solver step which is to compute Psg for
a given vector g. The efficient computation of P,g for a given vector g can be
done as follows:

ALGORITHM 3: PRECONDITIONER SOLVER
o = 0
Fori=0tos—1

Tiv1 = z; + Go(g — Az;)

where Gy = Zi:l My 'Ej. Since My, and Ej, are of the form (20) and (21),
Algorithm 3 can be executed completely in parallel as described in Algorithm 2.
Hence, P, becomes a good parallel preconditioner for Krylov subspace method.
Since other computational kernels of Krylov subspace methods can be easily
parallelized, Krylov subspace method with the preconditioner P, can be fully
parallelized among the £ processors.

4. Numerical results

In this section, we provide numerical results of both the SOR-like multi-
splitting method with preweighting described in Section 3 and Krylov subspace
method with the preconditioner P; proposed in Section 3 for solving Az = b,
where A is a large sparse H-matrix. Krylov subspace method used for nu-
merical experiments is the right preconditioned BICGSTAB method. We also
tried numerical experiments for both GMRES with the preconditioner P and
FGMRES (flexible GMRES) using Ps’s as preconditioners, but their parallel
performance results are much worse than those for the right preconditioned
BiCGSTAB. So, we do not report parallel performance results for both GM-
RES and FGMRES. The test matrix A arises from five-point discretization of
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the following elliptic second order PDE

(23) —(atz)z — (buy)y + (ct)z + (du)y + fu=g

with a(z,y) > 0, b(z,y) > 0, c¢(z,y),d(x,y) and f(z,y) defined on a square
region {2, and with suitable boundary conditions on 92 which denotes the
boundary of €.

In all cases, the SOR-like multisplitting method with preweighting and the
preconditioned BICGSTAB was started with zero initial vector, and e; = 1/¢
is used for each 1 < ¢ < ¢. The multisplitting method with preweighting
was stopped when ||7;||2/]/b]l2 < 1075, and the preconditioned BICGSTAB was
stopped when ||r;]|2/||b]l2 < 1078, where r; denote the residual vector at the
i-th step of the methods and || - ||2 refers to La-norm. All numerical tests have
been carried out using the IBM supercomputer Power6 H system at KISTI
(Korean Institute of Science and Technology Information). All parallel codes
were written in OpenMP Fortran [8] using 64-bit arithmetics. All nonzero
elements of A are stored using the compressed row storage format [9]. For
all timing runs, elapsed wall-clock time is measured in seconds using the IBM
wall-clock timer rtc.

All test problems used in this paper are of the type (23) with the unit square
region © = (0,1) x (0,1) and the Dirichlet boundary condition u(x,y) = 0 on
09). Only the discretized matrix A is of importance, so the right-hand side
vector b is created artificially. Therefore, the right-hand side function g(z,y)
in (23) is not relevant.

Example 4.1. We consider equation (23) with a(z,y) = b(z,y) = 1,¢(x,y) =
10(x + y),d(z,y) = 10(x — y) and f(x,y) = 0. We have used three uniform
meshes of Az = Ay = 1/258, Az = Ay = 1/386 and Az = Ay = 1/514
which lead to three matrices of order n = 2572 = 66049, n = 3852 = 148225
and n = 5132 = 263169, where Az and Ay refer to the mesh sizes in the z-
direction and y-direction, respectively. Once the matrix A is constructed from
five-point finite difference discretization of the PDE, the right-hand side vector
b is chosen so that b = A(1,1,...,1)”. Numerical results for Example 4.1 are
listed in Tables 1 to 3.

Example 4.2. This example is the same as Example 4.1 except for c(z,y) =
10e*¥, d(z,y) = 10e~*¥. We have used the same uniform meshes as in Exam-
ple 4.1 and the right-hand side vector b is chosen so that b = A(1,1,...,1)7.
Numerical results for Example 4.2 are listed in Tables 4 to 6.

For all test problems, e; = 1/¢ is used for each 1 < i < ¢. For n = m?, the
first £ blocks are divided into equal sizes of W and the last (¢+ 1)th block
has order m.

In Examples 4.1 and 4.2, the SOR-like multisplitting method with preweight-
ing was carried out for n = 2572, 3852 and various values of w. The BiCGSTAB
method with the preconditioner P, was carried out for n = 5132 and various
values of s and w.



820 YU DU HAN AND JAE HEON YUN

TABLE 1. Numerical results of the SOR-like multisplitting method
with preweighting for Example 4.1 with n = 66049

n = 66049
/=2 /=4 (=8 /=16
w Iter | I-time | Iter | I-time | Iter | I-time | Iter | I-time
0.8 | 43129 | 55.0 | 43172 | 28.5 | 43258 | 15.9 | 43428 | 10.7
0.9 | 37136 | 47.3 | 37179 | 24.5 | 37265 | 13.6 | 37436 9.2
1.0 | 32342 | 41.6 | 32385 | 21.6 | 32471 | 11.9 | 32642 8.2
1.1 | 28420 | 36.3 | 28463 | 18.8 | 28549 | 10.5 | 28720 7.1
1.2 | 25151 | 32.1 | 25195 | 16.6 | 25281 9.3 25452 6.3
1.3 | 22385 | 28.5 | 22429 | 14.8 | 22515 8.2 22687 | 5.6
1.4 Does not Converge

TABLE 2. Numerical results of the SOR-like multisplitting method
with preweighting for Example 4.1 with n = 148225

n = 148225
(=2 /=4 /=8 /=16
w Iter | I-time | Iter | I-time | Iter | I-time | Iter | I-time
0.8 | 88158 | 254.4 | 88216 | 128.1 | 88333 | 67.1 | 88565 | 40.2
0.9 | 75909 | 222.2 | 75968 | 111.7 | 76085 | 58.8 | 76318 | 34.3
1.0 | 66110 | 194.1 | 66169 | 98.2 | 66287 | 51.4 | 66519 | 30.3
1.1 | 58093 | 170.0 | 58152 | 85.6 | 58270 | 44.9 | 58503 | 26.2
1.2 | 51412 | 150.4 | 51472 | 75.8 | 51589 | 39.8 | 51823 | 23.4
1.3 | 45759 | 134.0 | 45819 | 67.6 | 45936 | 35.5 | 46171 | 21.2
14 Does not Converge

In Tables 1 to 6, £ stands for the number of processors to be used, Iter
the number of iterations of two iterative methods, I-time parallel execution
time of two iterative methods. In Tables 3 and 6, P refers to the parallel
preconditioner described in Section 3.

The scaling behaviors for I-time of the SOR-like multisplitting method with
preweighting when n = 3852 are depicted in Figures 1 and 3 by log-log scale.
The scaling behaviors for I-time of the BICGSTAB method using preconditioner
P, when n = 5132 are depicted in Figures 2 and 4 by log-log scale.

5. Concluding remarks

In this paper, we have studied convergence of a special type of multisplitting
methods with preweighting, and we proposed both parallel implementation of
the SOR-like multisplitting method with preweighting and an application of the
SOR-like multisplitting method with preweighting to a parallel preconditioner
of Krylov subspace method.

For test problems used in this paper, the SOR-like multisplitting method
with preweighting performed best on the IBM supercomputer Power6 H system
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TABLE 3. Numerical results of BICGSTAB using preconditioners Py, Ps, P3, Py
for Example 4.1 with n = 263169

n = 263169
(=2 (=4 /=8 (=16 =32
w | Py | Iter | I-time | Iter | I-time | Iter | I-time | Iter | I-time | Iter | I-time
1 | 1180 | 13.39 | 1169 | 6.72 | 1360 | 4.07 | 1231 | 2.10 | 1048 | 1.38
0.8| 2 | 543 | 11.83 | 578 6.37 551 3.13 629 1.96 561 1.26
3 | 397 | 12.88 | 393 6.40 429 3.59 428 1.96 505 1.56
4 | 365 | 15.59 | 398 8.56 346 3.85 365 2.19 365 1.48
1 | 1224 | 13.84 | 1300 | 7.48 | 1284 | 3.84 | 1306 | 2.22 | 1182 | 1.51
09| 2 | 555 | 12.04 | 523 5.78 607 3.46 470 1.51 517 1.15
3 | 423 | 13.54 | 452 7.32 415 3.48 413 1.89 404 1.30
4 | 344 | 14.53 | 308 6.63 353 3.89 325 1.97 386 1.59
1 | 1066 | 12.08 | 1327 | 7.62 | 1120 | 3.33 | 1176 | 1.97 | 1371 | 1.66
1.0 2 | 589 | 12.77 | 503 5.55 559 3.16 561 1.77 484 1.06
3 | 414 | 13.21 | 449 7.26 423 3.52 414 1.89 393 1.23
4 | 346 | 14.61 | 324 6.94 328 3.61 339 2.02 327 1.33
1 | 1133 | 12.81 | 1327 | 7.62 | 1342 | 3.99 | 1199 | 2.03 | 1468 | 1.83
1.1 2 | 820 | 17.84 | 756 8.34 799 4.53 711 2.22 640 1.41
3 | 495 | 15.83 | 460 7.46 489 4.07 510 2.32 509 1.59
4 | 373 | 15.78 | 320 6.87 366 4.04 327 1.96 337 1.31
1 | 1113 | 12.61 | 1070 | 6.18 | 1193 | 3.57 | 1221 | 2.08 | 1186 | 1.50
1.2 2 | 1182 | 25.62 | 1236 | 13.58 | 1230 | 6.97 | 1241 | 3.83 | 1049 | 2.60
3 | 569 | 18.23 | 616 | 10.20 | 627 5.22 488 2.25 588 1.89
4 | 495 | 2093 | 613 | 13.13 | 469 5.15 568 3.38 518 2.09
1 | 1560 | 17.71 | 1055 | 6.11 | 1409 | 4.20 | 1474 | 2.50 | 1453 | 1.86
1.3 2 |2323 | 50.39 | 2127 | 23.27 | 1992 | 11.25 | 2466 | 7.60 | 2330 | 5.09
3 | 561 | 1891 | 761 | 12.83 | 772 6.42 816 3.70 759 2.35
4 | 1220 | 53.77 | 1201 | 26.64 | 1128 | 12.30 | 1277 | 7.54 | 1606 | 6.34

TABLE 4. Numerical results of the SOR-like multisplitting method
with preweighting for Example 4.2 with n = 66409

n = 66409
/=2 /=4 (=8 /=16
w Iter | I-time | Iter | I-time | Iter | I-time | Iter | I-time
0.8 | 31213 | 40.7 | 31247 | 21.1 | 31310 | 11.7 | 31435 7.8
0.9 | 26868 | 35.0 | 26903 | 18.2 | 26966 | 10.1 | 27090 6.8
1.0 | 23392 | 30.5 | 23427 | 15.9 | 23490 | 8.8 23615 5.8
1.1 | 20549 | 26.8 | 20583 | 14.0 | 20647 7.8 20771 5.2
1.2 | 18179 | 23.7 | 18214 | 12.3 | 18277 | 6.9 18402 | 4.6
1.3 | 16174 | 21.1 | 16208 | 11.0 | 16272 6.1 16397 | 4.1
1.4 Does not Converge

when w = 1.3, and BICGSTAB method with the parallel preconditioner P
performed best for almost all cases when w = 0.9 or 1.0 and s = 2. As can be
seen in Tables 1 to 6 and Figures 1 to 4, parallel performance of the SOR-like
multisplitting method with preweighting is quite efficient, and its application to
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TABLE 5. Numerical results of the SOR-like multisplitting method
with preweighting for Example 4.2 with n = 148225

n = 148225
/=2 /=4 /=8 /=16
w Iter | I-time | Iter | I-time | Iter | I-time | Iter | I-time
0.8 | 65054 | 191.0 | 65102 | 96.7 | 65189 | 51.0 | 65362 | 29.4
0.9 | 56004 | 164.3 | 56052 | 83.3 | 56140 | 43.8 | 56312 | 25.5
1.0 | 48764 | 143.0 | 48812 | 72.5 | 48900 | 38.2 | 49073 | 22.0
1.1 | 42841 | 125.5 | 42889 | 63.7 | 42977 | 33.6 | 43150 | 19.7
1.2 | 37905 | 111.2 | 37953 | 56.3 | 38041 | 29.6 | 38214 | 17.2
1.3 133728 | 99.0 | 33776 | 50.1 | 33864 | 26.4 | 34038 | 15.3
1.4 Does not Converge
TABLE 6. Numerical results of BICGSTAB using preconditioners Py, Py, P3, Py
for Example 4.2 with n = 263169
n = 263169
/=2 /=4 /=8 /=16 (=32
w | Ps | Iter | I-time | Iter | I-time | Iter | I-time | Iter | I-time | Iter | I-time
1 | 1171 | 13.27 | 1011 5.83 1248 | 3.73 1250 2.10 1143 1.51
08| 2 | 546 | 11.87 | 528 5.82 573 3.25 548 1.75 528 1.18
3 438 | 14.02 | 433 7.00 413 3.45 438 1.99 415 1.33
4 399 | 16.84 | 355 7.59 357 3.92 371 2.21 372 1.54
1 | 1059 | 12.01 | 961 5.53 | 1037 | 3.10 | 1053 | 1.80 | 1171 1.52
09| 2 546 | 11.84 | 495 5.45 524 2.98 520 1.64 524 1.17
3 | 436 | 13.93 | 402 6.51 421 3.51 412 1.88 395 1.26
4 357 | 15.04 | 334 7.14 348 3.83 345 2.06 351 1.44
1 | 1166 | 13.23 | 1187 | 6.83 942 2.85 | 1468 | 2.46 | 1169 | 1.52
1.0] 2 547 | 11.89 | 623 6.87 536 3.07 544 1.73 492 1.12
3 423 | 13.55 | 409 6.65 414 3.46 446 2.02 381 1.22
4 | 332 | 14.06 | 321 6.90 323 3.57 364 2.17 327 1.33
1 {1039 | 11.48 | 987 5.68 | 1046 | 3.12 | 1398 | 2.35 | 1373 | 1.75
1.1] 2 655 | 14.31 | 852 9.35 552 3.14 809 2.50 666 1.46
3 421 13.38 | 431 6.98 431 3.58 447 2.02 421 1.29
4 350 | 14.65 | 393 8.40 329 3.61 326 1.94 321 1.27
1 [1054 | 11.97 | 1360 | 7.82 | 1035 | 3.09 | 1215 | 2.06 | 1271 1.63
1.2 2 | 1142 | 24.69 | 1016 | 11.13 | 1116 | 6.29 | 1101 | 3.39 | 1086 | 2.37
3 663 | 21.17 | 643 | 10.26 | 641 5.30 469 2.12 606 1.91
4 529 | 22.29 | 479 | 10.22 | 533 5.81 540 3.18 483 1.94
1 947 11.02 | 1029 5.93 1247 | 3.71 1406 2.39 1464 1.89
1.3 2 | 1840 | 39.79 | 2177 | 23.80 | 1818 | 10.20 | 2074 | 6.36 | 2283 | 4.94
3 | 757 | 24.13 | 886 | 14.30 | 918 7.58 916 4.10 840 2.60
4 | 1077 | 45.38 | 1165 | 24.80 | 1038 | 11.28 | 1163 | 6.82 | 1307 | 5.02

parallel preconditioner of Krylov subspace method is quite successful. Notice
that the optimal value of w reported in this paper is not the exact one, but the
best one out of numerical experiments for 7 different values of w. If we use the
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FIGURE 4. Scaling behaviors of BICGSTAB using precondi-
tioner P, for Example 4.2 with n = 263169

exact optimal value of w, then performance results will be better than those
reported in this paper.

Even though the multisplitting method with preweighting has a lot of par-
allism and its parallel efficiency is quite good, its performance is too slow as
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compared with BICGSTAB with the parallel preconditioner Ps (see Tables 1

to

6). Therefore, the multisplitting method with preweighting itself is not rec-

ommended for use, but it is recommended for use as a parallel preconditioner

of

1
2
3
[4
5
6
[7
8
[9

[10

[11
[12

[13
[14

[15

Krylov subspace method in order to solve large sparse linear systems.
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