PARALLEL PERFORMANCE OF MULTISPLITTING METHODS WITH PREWEIGHTING

Yu Du Han and Jae Heon Yun

Abstract

In this paper, we first study convergence of a special type of multisplitting methods with preweighting, and then we provide some comparison results of those multisplitting methods. Next, we propose both parallel implementation of an SOR-like multisplitting method with preweighting and an application of the SOR-like multisplitting method with preweighting to a parallel preconditioner of Krylov subspace method Lastly, we provide parallel performance results of both the SOR-like multisplitting method with preweighting and Krylov subspace method with the parallel preconditioner to evaluate parallel efficiency of the proposed methods.

1. Introduction

In this paper, we consider multisplitting methods with preweighting for solving a linear system of the form

$$
\begin{equation*}
A x=b, \quad x, b \in \mathbb{R}^{n}, \tag{1}
\end{equation*}
$$

where $A \in \mathbb{R}^{n \times n}$ is a large sparse H-matrix.
For a vector $x \in \mathbb{R}^{n}, x \geq 0(x>0)$ denotes that all components of x are nonnegative (positive), and $|x|$ denotes the vector whose components are the absolute values of the corresponding components of x. For two vectors $x, y \in \mathbb{R}^{n}, x \geq y(x>y)$ means that $x-y \geq 0(x-y>0)$. These definitions carry immediately over to matrices. For a square matrix A, $\operatorname{diag}(A)$ denotes a diagonal matrix whose diagonal part coincides with the diagonal part of A. Let $\rho(A)$ denote the spectral radius of a square matrix A. Varga [11] showed that for any two square matrices A and $B,|A| \leq B$ implies $\rho(A) \leq \rho(B)$.

A matrix $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ is called monotone if A is nonsingular with $A^{-1} \geq 0$. A matrix $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ is called an M-matrix if it is a monotone

[^0]matrix with $a_{i j} \leq 0$ for $i \neq j$. The comparison matrix $\langle A\rangle=\left(\alpha_{i j}\right)$ of a matrix $A=\left(a_{i j}\right)$ is defined by
\[

\alpha_{i j}=\left\{$$
\begin{aligned}
\left|a_{i j}\right| & \text { if } i=j, \\
-\left|a_{i j}\right| & \text { if } i \neq j
\end{aligned}
$$\right.
\]

A matrix A is called an H-matrix if $\langle A\rangle$ is an M-matrix.
A representation $A=M-N$ is called a splitting of A if M is nonsingular. A splitting $A=M-N$ is called regular if $M^{-1} \geq 0$ and $N \geq 0$, and it is called weak regular if $M^{-1} \geq 0$ and $M^{-1} N \geq 0$ [1]. It is well known that if $A=M-N$ is a weak regular splitting of A , then $\rho\left(M^{-1} N\right)<1$ if and only if $A^{-1} \geq 0[1,11]$. A splitting $A=M-N$ is called an H-compatible splitting of A if $\langle A\rangle=\langle M\rangle-|N|$. It was shown in [5] that if A is an H-matrix and $A=M-N$ is an H-compatible splitting of A, then $\rho\left(M^{-1} N\right)<1$. A collection of triples $\left(M_{k}, N_{k}, E_{k}\right), k=1,2, \ldots, \ell$, is called a multisplitting of A if $A=M_{k}-N_{k}$ is a splitting of A for $k=1,2, \ldots, \ell$, and E_{k} 's, called weighting matrices, are nonnegative diagonal matrices such that $\sum_{k=1}^{\ell} E_{k}=I$.

Lemma 1.1 ([2]). Let $A^{-1} \geq 0$ and $A=M_{1}-N_{1}=M_{2}-N_{2}$ be weak regular splittings. In either of the following cases:
(a) $N_{1} \leq N_{2}$,
(b) $M_{1}^{-1} \geq M_{2}^{-1}, N_{1} \geq 0$,
(c) $M_{1}^{-1} \geq M_{2}^{-1}, N_{2} \geq 0$,
the inequality $\rho\left(M_{1}^{-1} N_{1}\right) \leq \rho\left(M_{2}^{-1} N_{2}\right)$ holds.
The multisplitting method with postweighting which is usually called the multisplitting method has been extensively studied in the literature, see $[3,4,6,7$, $10,12,14,15]$. However, the multisplitting method with preweighting has not been studied extensively, see $[4,13]$. This is the main motivation for studying convergence of multisplitting method with preweighting.

This paper is organized as follows. In Section 2, we first study convergence of a special type of multisplitting methods with preweighting, and then we provide some comparison results of those multisplitting methods. In Section 3, we propose both parallel implementation of an SOR-like multisplitting method with preweighting and an application of the SOR-like multisplitting method with preweighting to a parallel preconditioner of Krylov subspace method. In Section 4, we provide parallel performance results of both the SOR-like multisplitting method with preweighting and Krylov subspace method with the parallel preconditioner to evaluate parallel efficiency of the proposed methods. Lastly, some concluding remarks are withdrawn.

2. Convergence of multisplitting methods with preweighting

Let $\left(M_{k}, N_{k}, E_{k}\right), k=1,2, \ldots, \ell$, be a multisplitting of A. Then the corresponding multisplitting method with preweighting for solving $A x=b$ [13] is
given by

$$
\begin{align*}
x_{i+1} & =H_{0} x_{i}+G_{0} b \\
& =x_{i}+G_{0}\left(b-A x_{i}\right), i=0,1,2, \ldots, \tag{2}
\end{align*}
$$

where

$$
\begin{equation*}
G_{0}=\sum_{k=1}^{\ell} M_{k}^{-1} E_{k} \text { and } H_{0}=I-G_{0} A \tag{3}
\end{equation*}
$$

$H_{0}=I-\sum_{k=1}^{\ell} M_{k}^{-1} E_{k} A$ is called an iteration matrix for the multisplitting method with preweighting. Notice that then $H=I-\sum_{k=1}^{\ell} E_{k} M_{k}^{-1} A$ is called an iteration matrix for the multisplitting method. By simple calculation, one obtains

$$
H_{0}^{T}=A^{T}\left(I-\sum_{k=1}^{\ell} E_{k}\left(M_{k}^{T}\right)^{-1} A^{T}\right)\left(A^{T}\right)^{-1}
$$

Let $\hat{H}=I-\sum_{k=1}^{\ell} E_{k}\left(M_{k}^{T}\right)^{-1} A^{T}=\sum_{k=1}^{\ell} E_{k}\left(M_{k}^{T}\right)^{-1} N_{k}^{T}$. Then \hat{H} is similar to $H_{0}{ }^{T}$ and hence $\rho\left(H_{0}\right)=\rho(\hat{H})$. Notice that \hat{H} is an iteration matrix for the multisplitting method corresponding to a multisplitting $\left(M_{k}^{T}, N_{k}^{T}, E_{k}\right)$, $k=1,2, \ldots, \ell$, of A^{T}. Hence, convergence result of multisplitting method with preweighting corresponding to a multisplitting of A can be obtained from that of multisplitting method corresponding to a multisplitting of A^{T}.

The multisplitting method with preweighting associated with a multisplitting $\left(M_{k}, N_{k}, E_{k}\right), k=1,2, \ldots, \ell$, of A for solving the linear system (1) is as follows:

```
Algorithm 1: Multisplitting method with preweighting
Given an initial vector \(x_{0}\)
For \(i=0,1, \ldots\), until convergence
    For \(k=1\) to \(\ell\) \{parallel execution\}
        \(M_{k} y_{k}=E_{k}\left(b-A x_{i}\right)\)
    \(x_{i+1}=x_{i}+\sum_{k=1}^{\ell} y_{k}\)
```

We first consider the multisplitting method with preweighting corresponding to a special type of multisplitting $\left(M_{k}, N_{k}, E_{k}\right), k=1,2, \ldots, l$, of A which was first introduced by White [13] and studied further by Frommer and Mayer [4]. Let's assume that $\ell=3$ for simplicity of exposition. Then A is partitioned into

$$
A=\left(\begin{array}{cccc}
A_{1} & -C_{12} & -C_{13} & -C_{14} \tag{4}\\
-C_{21} & A_{2} & -C_{23} & -C_{24} \\
-C_{31} & -C_{32} & A_{3} & -C_{34} \\
-C_{41} & -C_{42} & -C_{43} & A_{4}
\end{array}\right),
$$

where A_{i} 's are square matrices. Let $A_{k}=B_{k}-C_{k}(1 \leq k \leq \ell+1)$ be a splitting of A_{k}. Let

$$
\begin{array}{ll}
M_{1}=\left(\begin{array}{cccc}
B_{1} & 0 & 0 & 0 \\
0 & B_{2} & 0 & 0 \\
0 & 0 & B_{3} & 0 \\
-C_{41} & 0 & 0 & B_{4}
\end{array}\right), & E_{1}=\left(\begin{array}{cccc}
I & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & e_{1} I
\end{array}\right), \\
M_{2}=\left(\begin{array}{cccc}
B_{1} & 0 & 0 & 0 \\
0 & B_{2} & 0 & 0 \\
0 & 0 & B_{3} & 0 \\
0 & -C_{42} & 0 & B_{4}
\end{array}\right), & E_{2}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & I & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & e_{2} I
\end{array}\right), \tag{5}\\
M_{3}=\left(\begin{array}{cccc}
B_{1} & 0 & 0 & 0 \\
0 & B_{2} & 0 & 0 \\
0 & 0 & B_{3} & 0 \\
0 & 0 & -C_{43} & B_{4}
\end{array}\right), & E_{3}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & I & 0 \\
0 & 0 & 0 & e_{3} I
\end{array}\right), \\
N_{k} & =M_{k}-A(1 \leq k \leq 3),
\end{array}
$$

where $\sum_{k=1}^{\ell} e_{k}=1$. Using this multisplitting $\left(M_{k}, N_{k}, E_{k}\right), k=1,2, \ldots, \ell$, of A, G_{0} and H_{0} are of the form

$$
\begin{aligned}
G_{0} & =\sum_{k=1}^{\ell} M_{k}^{-1} E_{k} \\
& =\left(\begin{array}{cccc}
B_{1}^{-1} & 0 & 0 & 0 \\
0 & B_{2}^{-1} & 0 & 0 \\
0 & 0 & B_{3}{ }^{-1} & 0 \\
B_{4}{ }^{-1} C_{41} B_{1}{ }^{-1} & B_{4}{ }^{-1} C_{42} B_{2}{ }^{-1} & B_{4}^{-1} C_{43} B_{3}^{-1} & B_{4}^{-1}
\end{array}\right), \\
H_{0} & =I-G_{0} A=\left(\begin{array}{cccc}
B_{1}^{-1} C_{1} & B_{1}^{-1} C_{12} & B_{1}^{-1} C_{13} & B_{1}^{-1} C_{14} \\
B_{2}^{-1} C_{21} & B_{2}^{-1} C_{2} & B_{2}{ }^{-1} C_{23} & B_{2}^{-1} C_{24} \\
B_{3}{ }^{-1} C_{31} & B_{3}^{-1} C_{32} & B_{3}^{-1} C_{3} & B_{3}^{-1} C_{34} \\
\beta_{1} & \beta_{2} & \beta_{3} & \beta_{4}
\end{array}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& \beta_{i}=\sum_{k=1, k \neq i}^{\ell} B_{4}^{-1} C_{4, k} B_{k}^{-1} C_{k, i}+B_{4}^{-1} C_{4, i} B_{i}^{-1} C_{i} \text { for } i=1,2, \ldots \ell, \\
& \beta_{4}=\sum_{k=1}^{\ell} B_{4}^{-1} C_{4, k} B_{k}^{-1} C_{k, 4}+B_{4}^{-1} C_{4} .
\end{aligned}
$$

The following theorems are convergence results of multisplitting method with preweighting corresponding to the multisplitting of the form (5) when A is a monotone matrix or an H-matrix.

Theorem 2.1 ([13]). Let $A^{-1} \geq 0$ and $\left(M_{k}, N_{k}, E_{k}\right), k=1,2, \ldots, \ell$, be a multisplitting of A with M_{k}, N_{k} and E_{k} defined as in (5). If $A_{k}=B_{k}-C_{k}$
is a weak regular splitting of A_{k} and $C_{i j} \geq 0(1 \leq i, j, k \leq \ell+1, i \neq j)$, then $H_{0} \geq 0$ and $\rho\left(H_{0}\right)<1$, where $H_{0}=I-\sum_{k=1}^{\ell} M_{k}^{-1} E_{k} A$.

Theorem 2.2 ([4]). Let $\left(M_{k}, N_{k}, E_{k}\right), k=1,2, \ldots, \ell$, be a multisplitting of A with M_{k}, N_{k} and E_{k} defined as in (5). If A is an H-matrix and $A_{k}=B_{k}-C_{k}$ is an H-compatible splitting of A_{k} for $k=1,2, \ldots, \ell+1$, then $\rho\left(H_{0}\right)<1$, where $H_{0}=I-\sum_{k=1}^{\ell} M_{k}^{-1} E_{k} A$.

The following theorem provides a convergence result of the AOR-like multisplitting method with preweighting of the form (5) when A is an H-matrix.

Theorem 2.3. Assume that A is an H-matrix with $A=D-F$, where $D=$ $\operatorname{diag}(A)$. Let $\left(M_{k}, N_{k}, E_{k}\right), k=1,2, \ldots, \ell$, be a multisplitting of A with M_{k}, N_{k} and E_{k} defined as in (5), where for $k=1,2, \ldots, \ell+1$

$$
\begin{equation*}
B_{k}=\frac{1}{\omega}\left(D_{k}-\gamma L_{k}\right), \quad C_{k}=\frac{1}{\omega}\left((1-\omega) D_{k}+(\omega-\gamma) L_{k}+\omega V_{k}\right) \tag{7}
\end{equation*}
$$

$D_{k}=\operatorname{diag}\left(A_{k}\right), L_{k}$ is a strictly lower triangular matrix and V_{k} is a general matrix satisfying $V_{k}=D_{k}-L_{k}-A_{k}$. If $0<\gamma \leq \omega<\frac{2}{1+\alpha}$ and $\left\langle A_{k}\right\rangle=$ $\left|D_{k}\right|-\left|L_{k}\right|-\left|V_{k}\right|$ for $k=1,2, \ldots, \ell+1$, then $\rho\left(H_{0}\right)<1$, where $H_{0}=I-$ $\sum_{k=1}^{\ell} M_{k}^{-1} E_{k} A$ and $\alpha=\rho\left(|D|^{-1}|F|\right)$.

Proof. Since $\left\langle A_{k}\right\rangle=\left|D_{k}\right|-\left|L_{k}\right|-\left|V_{k}\right|$, the corresponding coefficients of $(\omega-$ $\gamma) L_{k}$ and ωV_{k} have the same signs for $k=1,2, \ldots, \ell+1$. We first consider the case where $0<\gamma \leq \omega \leq 1$. From (7), one obtains for $k=1,2, \ldots, \ell+1$

$$
\begin{aligned}
\left\langle B_{k}\right\rangle-\left|C_{k}\right| & =\left\langle\frac{1}{\omega}\left(D_{k}-\gamma L_{k}\right)\right\rangle-\left|\frac{1}{\omega}\left((1-\omega) D_{k}+(\omega-\gamma) L_{k}+\omega V_{k}\right)\right| \\
& =\frac{1}{\omega}\left(\left|D_{k}\right|-\gamma\left|L_{k}\right|\right)-\frac{1}{\omega}\left((1-\omega)\left|D_{k}\right|+(\omega-\gamma)\left|L_{k}\right|+\omega\left|V_{k}\right|\right) \\
& =\left|D_{k}\right|-\left|L_{k}\right|-\left|V_{k}\right|=\left\langle A_{k}\right\rangle .
\end{aligned}
$$

Hence, $A_{k}=B_{k}-C_{k}$ is an H-compatible splitting of A_{k} for $k=1,2, \ldots, \ell+1$. By Theorem 2.2, $\rho\left(H_{0}\right)<1$ for $0<\gamma \leq \omega \leq 1$. Next we consider the case where $1<\omega<\frac{2}{1+\alpha}$ and $\gamma \leq \omega$. For $k=1,2, \ldots, \ell+1$, let

$$
\begin{aligned}
& \tilde{C}_{k}=\frac{1}{\omega}\left((\omega-1) D_{k}+(\omega-\gamma) L_{k}+\omega V_{k}\right) \\
& \tilde{A}_{k}=B_{k}-\tilde{C}_{k}
\end{aligned}
$$

Then, it can be easily seen that for $k=1,2, \ldots, \ell+1$,

$$
\tilde{A}_{k}=\frac{2-\omega}{\omega} D_{k}-L_{k}-V_{k} .
$$

Let $\tilde{A}=\frac{2-\omega}{\omega} D-F$. Then $\langle\tilde{A}\rangle=\frac{2-\omega}{\omega}|D|-|F|$ is a regular splitting of $\langle\tilde{A}\rangle$. Since $1<\omega<\frac{2}{1+\alpha}, \rho\left(\frac{\omega}{2-\omega}|D|^{-1}|F|\right)=\frac{\omega \alpha}{2-\omega}<1$. It follows that $\langle\tilde{A}\rangle^{-1} \geq 0$ and thus \tilde{A} is an H-matrix. Since $A_{k}=D_{k}-L_{k}-V_{k}, \tilde{A}_{k}=\frac{2-\omega}{\omega} D_{k}-L_{k}-V_{k}$,
which is a block diagonal component of \tilde{A}. Clearly, $\tilde{A_{k}}$ is an H-matrix for $k=1,2, \ldots, \ell+1$. Notice that for $k=1,2, \ldots, \ell+1$,

$$
\begin{aligned}
\left\langle B_{k}\right\rangle-\left|\tilde{C}_{k}\right| & =\frac{1}{\omega}\left(\left|D_{k}\right|-\gamma\left|L_{k}\right|\right)-\frac{1}{\omega}\left((\omega-1)\left|D_{k}\right|+(\omega-\gamma)\left|L_{k}\right|+\omega\left|V_{k}\right|\right) \\
& =\frac{2-\omega}{\omega}\left|D_{k}\right|-\left|L_{k}\right|-\left|V_{k}\right|=\left\langle\tilde{A}_{k}\right\rangle
\end{aligned}
$$

Note that $\langle\tilde{A}\rangle$ can be written as

$$
\langle\tilde{A}\rangle=\left(\begin{array}{cccc}
\left\langle\tilde{A}_{1}\right\rangle & -\left|C_{1,2}\right| & \cdots & -\left|C_{1, \ell+1}\right| \\
-\left|C_{2,1}\right| & \left\langle\tilde{A}_{2}\right\rangle & \cdots & -\left|C_{2, \ell+1}\right| \\
\vdots & \vdots & \ddots & \vdots \\
-\left|C_{\ell+1,1}\right| & -\left|C_{\ell+1,2}\right| & \cdots & \left\langle\tilde{A}_{\ell+1}\right\rangle
\end{array}\right)
$$

For $k=1,2, \ldots, \ell$, let

$$
\tilde{M}_{k}=\left(\begin{array}{ccccc}
\left\langle B_{1}\right\rangle & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & & & \vdots \\
0 & & \left\langle B_{k}\right\rangle & & 0 \\
\vdots & & 0 & \ddots & \vdots \\
0 & \cdots & -\left|C_{\ell+1, k}\right| & \cdots & \left\langle B_{\ell+1}\right\rangle
\end{array}\right) \quad \text { and } \tilde{N}_{k}=\tilde{M}_{k}-\langle\tilde{A}\rangle
$$

Then $\left(\tilde{M}_{k}, \tilde{N}_{k}, E_{k}\right), k=1,2, \ldots \ell$, is a multisplitting of $\langle\tilde{A}\rangle$ of the form (5). Since $\langle\tilde{A}\rangle^{-1} \geq 0$ and $\left\langle\tilde{A}_{k}\right\rangle=\left\langle B_{k}\right\rangle-\left|\tilde{C}_{k}\right|$ is a regular splitting of $\left\langle\tilde{A}_{k}\right\rangle$ for $k=1,2, \ldots, \ell+1, \rho\left(\tilde{H}_{0}\right)<1$ from Theorem 2.1, where

$$
\begin{aligned}
\tilde{H}_{0}= & \left(\begin{array}{ccccc}
\left\langle B_{1}\right\rangle^{-1}\left|\tilde{C}_{1}\right| & \left\langle B_{1}\right\rangle^{-1}\left|C_{1,2}\right| & \cdots & \left\langle B_{1}\right\rangle^{-1}\left|C_{1, \ell}\right| & \left\langle B_{1}\right\rangle^{-1}\left|C_{1, \ell+1}\right| \\
\left\langle B_{2}\right\rangle^{-1}\left|C_{2,1}\right| & \left\langle B_{2}\right\rangle^{-1}\left|\tilde{C}_{2}\right| & \cdots & \left\langle B_{2}\right\rangle^{-1}\left|C_{2, \ell}\right| & \left\langle B_{2}\right\rangle^{-1}\left|C_{2, \ell+1}\right| \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\left\langle B_{\ell}\right\rangle^{-1}\left|C_{\ell, 1}\right| & \left\langle B_{\ell}\right\rangle^{-1}\left|C_{\ell, 2}\right| & \cdots & \left\langle B_{\ell}\right\rangle^{-1}\left|\tilde{C}_{\ell}\right| & \left\langle B_{\ell}\right\rangle^{-1}\left|C_{\ell, \ell+1}\right| \\
\tilde{\beta}_{1} & \tilde{\beta}_{2} & \cdots & \tilde{\beta}_{\ell} & \tilde{\beta}_{\ell+1}
\end{array}\right), \\
\tilde{\beta}_{i}= & \sum_{k=1, k \neq i}^{\ell}\left\langle B_{\ell+1}\right\rangle^{-1}\left|C_{\ell+1, k}\right|\left\langle B_{k}\right\rangle^{-1}\left|C_{k, i}\right|+\left\langle B_{\ell+1}\right\rangle^{-1}\left|C_{\ell+1, i}\right|\left\langle B_{i}\right\rangle^{-1}\left|\tilde{C}_{i}\right| \\
& (1 \leq i \leq \ell), \\
\tilde{\beta}_{\ell+1}= & \sum_{k=1}^{\ell}\left\langle B_{\ell+1}\right\rangle^{-1}\left|C_{\ell+1, k}\right|\left\langle B_{k}\right\rangle^{-1}\left|C_{k, \ell+1}\right|+\left\langle B_{\ell+1}\right\rangle^{-1}\left|\tilde{C}_{\ell+1}\right| .
\end{aligned}
$$

Since B_{k} is an H-matrix for $1 \leq k \leq \ell+1$, one obtains

$$
\left|B_{k}^{-1}\right| \leq\left\langle B_{k}\right\rangle^{-1} \quad \text { and } \quad\left|C_{k}\right| \leq\left|\tilde{C}_{k}\right|
$$

Using these inequalities, $\left|H_{0}\right| \leq \tilde{H}_{0}$ is obtained. Thus, $\rho\left(H_{0}\right)<1$ for $1<\omega<$ $\frac{2}{1+\alpha}$ and $\gamma \leq \omega$. Therefore, $\rho\left(H_{0}\right)<1$ for $0<\gamma \leq \omega<\frac{2}{1+\alpha}$.

If $\gamma=\omega$ in Theorem 2.3, then Theorem 2.3 reduces to a convergence result of the SOR-like multisplitting method with preweighting of the form (5).

Definition 2.4. $A=M-N$ is called an SSOR-like splitting of A if

$$
\begin{aligned}
M & =\frac{1}{\omega(2-\omega)}(D-\omega L) D^{-1}(D-\omega V) \\
N & =\frac{1}{\omega(2-\omega)}((1-\omega) D+\omega L) D^{-1}((1-\omega) D+\omega V)
\end{aligned}
$$

where $0<\omega<2, D=\operatorname{diag}(A), L$ is a strictly lower triangular matrix and V is a general matrix satisfying $V=D-L-A$.

The following example shows that the SSOR-like splitting of an H-matrix $A=D-L-V$ such that $\langle A\rangle=|D|-|L|-|V|$ is not an H-compatible splitting of A.

Example 2.5. Let $A=D-L-V$ be a 2×2 matrix defined by

$$
A=\left(\begin{array}{cc}
2 & -3 \\
2 & 4
\end{array}\right), \quad D=\left(\begin{array}{cc}
2 & 0 \\
0 & 4
\end{array}\right), \quad L=\left(\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right), \quad V=\left(\begin{array}{cc}
0 & 3 \\
-1 & 0
\end{array}\right)
$$

It is clear that $\langle A\rangle=|D|-|L|-|V|$. Since $\langle A\rangle^{-1} \geq 0, A$ is an H-matrix. By simple calculation

$$
\begin{aligned}
& M=(D-L) D^{-1}(D-V)=\left(\begin{array}{cc}
2 & -3 \\
2 & \frac{5}{2}
\end{array}\right) \\
& N=L D^{-1} V=\left(\begin{array}{cc}
0 & 0 \\
0 & -\frac{3}{2}
\end{array}\right)
\end{aligned}
$$

It follows that

$$
\langle M\rangle=\left(\begin{array}{cc}
2 & -3 \\
-2 & \frac{5}{2}
\end{array}\right), \quad|N|=\left(\begin{array}{cc}
0 & 0 \\
0 & \frac{3}{2}
\end{array}\right),\langle M\rangle-|N|=\left(\begin{array}{cc}
2 & -3 \\
-2 & 1
\end{array}\right)
$$

Note that $A=M-N$ is an SSOR-like splitting of A with $\omega=1$. However, $\langle M\rangle-|N| \neq\langle A\rangle$, which shows that $A=M-N$ is not an H-compatible splitting of A.

The following theorem provides a convergence result of the SSOR-like multisplitting method with preweighting of the form (5) when A is an H-matrix.

Theorem 2.6. Assume that A is an H-matrix with $A=D-F$, where $D=$ $\operatorname{diag}(A)$. Let $\left(M_{k}, N_{k}, E_{k}\right), k=1,2, \ldots, \ell$, be a multisplitting of A with M_{k}, N_{k} and E_{k} defined as in (5), where

$$
\begin{align*}
B_{k} & =\frac{1}{\omega(2-\omega)}\left(D_{k}-\omega L_{k}\right) D_{k}^{-1}\left(D_{k}-\omega V_{k}\right) \\
C_{k} & =\frac{1}{\omega(2-\omega)}\left((1-\omega) D_{k}+\omega L_{k}\right) D_{k}^{-1}\left((1-\omega) D_{k}+\omega V_{k}\right) \tag{8}
\end{align*}
$$

$D_{k}=\operatorname{diag}\left(A_{k}\right), L_{k}$ is a strictly lower triangular matrix and V_{k} is a general matrix satisfying $V_{k}=D_{k}-L_{k}-A_{k}$. If $0<\omega<\frac{2}{1+\alpha}$ and $\left\langle A_{k}\right\rangle=\left|D_{k}\right|-\left|L_{k}\right|-$ $\left|V_{k}\right|$, then $\rho\left(H_{0}\right)<1$, where $H_{0}=I-\sum_{k=1}^{\ell} M_{k}^{-1} E_{k} A$ and $\alpha=\rho\left(|D|^{-1}|F|\right)$.

Proof. We consider the first case where $0<\omega \leq 1$. From the assumption, one obtains for $k=1,2, \ldots, \ell+1$,

$$
\begin{aligned}
\left\langle A_{k}\right\rangle= & \frac{1}{\omega(2-\omega)}\left(\left|D_{k}\right|-\omega\left|L_{k}\right|\right)\left|D_{k}\right|^{-1}\left(\left|D_{k}\right|-\omega\left|V_{k}\right|\right) \\
& -\frac{1}{\omega(2-\omega)}\left((1-\omega)\left|D_{k}\right|+\omega\left|L_{k}\right|\right)\left|D_{k}\right|^{-1}\left((1-\omega)\left|D_{k}\right|+\omega\left|V_{k}\right|\right)
\end{aligned}
$$

For $k=1,2, \ldots, \ell+1$, let

$$
\begin{aligned}
\tilde{B}_{k} & =\frac{1}{\omega(2-\omega)}\left(\left|D_{k}\right|-\omega\left|L_{k}\right|\right)\left|D_{k}\right|^{-1}\left(\left|D_{k}\right|-\omega\left|V_{k}\right|\right) \\
\tilde{C}_{k} & =\frac{1}{\omega(2-\omega)}\left((1-\omega)\left|D_{k}\right|+\omega\left|L_{k}\right|\right)\left|D_{k}\right|^{-1}\left((1-\omega)\left|D_{k}\right|+\omega\left|V_{k}\right|\right)
\end{aligned}
$$

Then $\left\langle A_{k}\right\rangle=\tilde{B}_{k}-\tilde{C}_{k}$ is a regular splitting of $\left\langle A_{k}\right\rangle$ for $k=1,2, \ldots, \ell+1$. Let for $k=1,2, \ldots, \ell$,

$$
\tilde{M}_{k}=\left(\begin{array}{ccccc}
\tilde{B}_{1} & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & & & \vdots \\
0 & & \tilde{B}_{k} & & 0 \\
\vdots & & 0 & \ddots & \vdots \\
0 & \cdots & -\left|C_{\ell+1, k}\right| & \cdots & \tilde{B}_{\ell+1}
\end{array}\right) \text { and } \tilde{N}_{k}=\tilde{M}_{k}-\langle A\rangle
$$

Then $\left(\tilde{M}_{k}, \tilde{N}_{k}, E_{k}\right), k=1,2, \ldots, \ell$, is a multisplitting of $\langle A\rangle$ of the form (5).
Since $\langle A\rangle^{-1} \geq 0, \rho\left(\tilde{H}_{0}\right)<1$ from Theorem 2.1, where
(9) $\quad \tilde{H}_{0}=\left(\begin{array}{ccccc}\tilde{B}_{1}^{-1} \tilde{C}_{1} & \tilde{B}_{1}^{-1}\left|C_{1,2}\right| & \cdots & \tilde{B}_{1}^{-1}\left|C_{1, \ell}\right| & \tilde{B}_{1}^{-1}\left|C_{1, \ell+1}\right| \\ \tilde{B}_{2}^{-1}\left|C_{2,1}\right| & \tilde{B}_{2}^{-1} \tilde{C}_{2} & \cdots & \tilde{B}_{2}^{-1}\left|C_{2, \ell}\right| & \tilde{B}_{2}^{-1}\left|C_{2, \ell+1}\right| \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \tilde{B}_{\ell}^{-1}\left|C_{\ell, 1}\right| & \tilde{B}_{\ell}^{-1}\left|C_{\ell, 2}\right| & \cdots & \tilde{B}_{\ell}^{-1} \tilde{C}_{\ell} & \tilde{B}_{\ell}^{-1}\left|C_{\ell, \ell+1}\right| \\ \tilde{\beta}_{1} & \tilde{\beta}_{2} & \cdots & \tilde{\beta}_{\ell} & \tilde{\beta}_{\ell+1}\end{array}\right)$,

$$
\begin{aligned}
\tilde{\beta}_{i} & =\sum_{k=1, k \neq i}^{\ell} \tilde{B}_{\ell+1}^{-1}\left|C_{\ell+1, k}\right| \tilde{B}_{k}^{-1}\left|C_{k, i}\right|+\tilde{B}_{\ell+1}^{-1}\left|C_{\ell+1, i}\right| \tilde{B}_{i}^{-1} \tilde{C}_{i}(1 \leq i \leq \ell) \\
\tilde{\beta}_{\ell+1} & =\sum_{k=1}^{\ell} \tilde{B}_{\ell+1}^{-1}\left|C_{\ell+1, k}\right| \tilde{B}_{k}^{-1}\left|C_{k, \ell+1}\right|+\tilde{B}_{\ell+1}^{-1} \tilde{C}_{\ell+1}
\end{aligned}
$$

Since A_{k} is an H-matrix, $D_{k}-\omega L_{k}$ and $D_{k}-\omega V_{k}$ are H-matrices for $k=$ $1,2, \ldots, \ell+1$. Hence one obtains

$$
\begin{array}{r}
\left|\left(D_{k}-\omega L_{k}\right)^{-1}\right| \leq\left(\left|D_{k}\right|-\omega\left|L_{k}\right|\right)^{-1} \\
\left|\left(D_{k}-\omega V_{k}\right)^{-1}\right| \leq\left(\left|D_{k}\right|-\omega\left|V_{k}\right|\right)^{-1} \\
\quad\left|B_{k}^{-1}\right| \leq \tilde{B}_{k}^{-1} \text { and }\left|C_{k}\right| \leq \tilde{C}_{k}
\end{array}
$$

Using these inequalities, $\left|H_{0}\right| \leq \tilde{H}_{0}$ is obtained. Therefore, $\rho\left(H_{0}\right)<1$ for $0<\omega \leq 1$. Next we consider the case where $1<\omega<\frac{2}{1+\alpha}$. Let

$$
\hat{C}_{k}=\frac{1}{\omega(2-\omega)}\left((\omega-1)\left|D_{k}\right|+\omega\left|L_{k}\right|\right)\left|D_{k}\right|^{-1}\left((\omega-1)\left|D_{k}\right|+\omega V_{k}\right)
$$

Then one obtains for $k=1,2, \ldots, \ell+1$,

$$
\tilde{B}_{k}-\hat{C}_{k}=\frac{\omega}{2-\omega}\left(\frac{2-\omega}{\omega}\left|D_{k}\right|-\left|L_{k}\right|-\left|V_{k}\right|\right) .
$$

Let $\tilde{A}=|D|-\frac{\omega}{2-\omega}|F|$ and $\tilde{A}_{k}=\frac{2-\omega}{\omega}\left|D_{k}\right|-\left|L_{k}\right|-\left|V_{k}\right|$ for $k=1,2, \ldots, \ell+1$. Then $\tilde{A}=|D|-\frac{\omega}{2-\omega}|F|$ is a regular splitting of \tilde{A} and $\frac{\omega}{2-\omega} \tilde{A}_{k}=\tilde{B}_{k}-\hat{C}_{k}$. Since $1<\omega<\frac{2}{1+\alpha}, \rho\left(|D|^{-1} \frac{\omega}{2-\omega}|F|\right)=\frac{\omega}{2-\omega} \rho\left(|D|^{-1}|F|\right)=\frac{\omega \alpha}{2-\omega}<1$. Thus, $\tilde{A}^{-1} \geq 0$. Note that \tilde{A} can be written as

$$
\tilde{A}=\left(\begin{array}{cccc}
\frac{\omega}{2-\omega} \tilde{A}_{1} & -\frac{\omega}{2-\omega}\left|C_{1,2}\right| & \cdots & -\frac{\omega}{2-\omega}\left|C_{14}\right| \\
-\frac{\omega}{2-\omega}\left|C_{21}\right| & \frac{\omega}{2-\omega} \tilde{A}_{2} & \cdots & -\frac{\omega}{2-\omega}\left|C_{24}\right| \\
\vdots & \vdots & \ddots & \vdots \\
-\frac{\omega}{2-\omega}\left|C_{\ell+1,1}\right| & -\frac{\omega}{2-\omega}\left|C_{\ell+1,2}\right| & \cdots & \frac{\omega}{2-\omega} \tilde{A}_{\ell+1}
\end{array}\right) .
$$

Let for $k=1,2, \ldots, \ell$,

$$
M_{k}^{\star}=\left(\begin{array}{ccccc}
\tilde{B}_{1} & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & & & \vdots \\
0 & & \tilde{B}_{k} & & 0 \\
\vdots & & 0 & \ddots & \vdots \\
0 & \cdots & -\frac{\omega}{2-\omega}\left|C_{\ell+1, k}\right| & \cdots & \tilde{B}_{\ell+1}
\end{array}\right) \text { and } N_{k}^{\star}=M_{k}^{\star}-\tilde{A} .
$$

Then $\left(M_{k}^{\star}, N_{k}^{\star}, E_{k}\right), k=1,2, \ldots, \ell$, is a multisplitting of \tilde{A} of the form (5). Since $\frac{\omega}{2-\omega} \tilde{A}_{k}=\tilde{B}_{k}-\hat{C}_{k}$ is a regular splitting of $\frac{\omega}{2-\omega} \tilde{A}_{k}$ for $k=1,2, \ldots, \ell+1$, $\rho\left(H_{0}^{\star}\right)<1$ from Theorem 2.1, where

$$
H_{0}^{\star}=\frac{\omega}{2-\omega}\left(\begin{array}{ccccc}
\frac{2-\omega}{\omega} \tilde{B}_{1}^{-1} \hat{C}_{1} & \tilde{B}_{1}^{-1}\left|C_{1,2}\right| & \cdots & \tilde{B}_{1}^{-1}\left|C_{1, \ell}\right| & \tilde{B}_{1}^{-1}\left|C_{1, \ell+1}\right| \\
\tilde{B}_{2}^{-1}\left|C_{2,1}\right| & \frac{2-\omega}{\omega} \tilde{B}_{2}^{-1} \hat{C}_{2} & \cdots & \tilde{B}_{2}^{-1}\left|C_{2, \ell}\right| & \tilde{B}_{2}^{-1}\left|C_{2, \ell+1}\right| \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\tilde{B}_{\ell}^{-1}\left|C_{\ell, 1}\right| & \tilde{B}_{\ell}^{-1}\left|C_{\ell, 2}\right| & \cdots & \frac{2-\omega}{\omega} \tilde{B}_{\ell}^{-1} \hat{C}_{\ell} & \tilde{B}_{\ell}^{-1}\left|C_{\ell, \ell+1}\right| \\
\beta_{1}^{\star} & \beta_{2}^{\star} & \cdots & \beta_{\ell}^{\star} & \beta_{\ell+1}^{\star}
\end{array}\right)
$$

$$
\begin{aligned}
\beta_{i}^{\star} & =\frac{\omega}{2-\omega} \sum_{k=1, k \neq i}^{\ell} \tilde{B}_{\ell+1}^{-1}\left|C_{\ell+1, k}\right| \tilde{B}_{k}^{-1}\left|C_{k, i}\right|+\tilde{B}_{\ell+1}^{-1}\left|C_{\ell+1, i}\right| \tilde{B}_{i}^{-1} \hat{C}_{i}(1 \leq i \leq l), \\
\beta_{\ell+1}^{\star} & =\frac{\omega}{2-\omega} \sum_{k=1}^{\ell} \tilde{B}_{\ell+1}^{-1}\left|C_{\ell+1, k}\right| \tilde{B}_{k}^{-1}\left|C_{k, \ell+1}\right|+\frac{2-\omega}{\omega} \tilde{B}_{\ell+1}^{-1} \hat{C}_{\ell+1} .
\end{aligned}
$$

Since $\left|B_{k}^{-1}\right| \leq \tilde{B}_{k}^{-1},\left|C_{k}\right| \leq \hat{C}_{k}$ and $\frac{\omega}{2-\omega}>1,\left|H_{0}\right| \leq H_{0}^{\star}$ is obtained. Thus, $\rho\left(H_{0}\right)<1$ for $1<\omega<\frac{2}{1+\alpha}$. Therefore, $\rho\left(H_{0}\right)<1$ for all $0<\omega<\frac{2}{1+\alpha}$.

We next provide comparison results for multisplitting methods with preweighting of the form (5) when A is an M-matrix.

Theorem 2.7. Assume that A is an M-matrix. Let $\left(M_{k}, N_{k}, E_{k}\right), k=1,2, \ldots$, ℓ, be a multisplitting of A with M_{k}, N_{k} and E_{k} defined as in (5), where $B_{k}=$ $\frac{1}{\omega}\left(D_{k}-r L_{k}\right), C_{k}=\frac{1}{\omega}\left((1-\omega) D_{k}+(\omega-r) L_{k}+\omega V_{k}\right), D_{k}=\operatorname{diag}\left(A_{k}\right), L_{k}$ is a nonnegative strictly lower triangular matrix and V_{k} is a nonnegative matrix satisfying $V_{k}=D_{k}-L_{k}-A_{k}$ for $k=1,2, \ldots, \ell+1$. Let

$$
\begin{aligned}
& M_{A O R}=\frac{1}{\omega}(D-r L), \quad N_{A O R}=\frac{1}{\omega}((1-\omega) D+(\omega-r) L+\omega U), \\
& M_{J}=\frac{1}{\omega} D \text { and } N_{J}=\frac{1}{\omega}((1-\omega) D+\omega L+\omega U),
\end{aligned}
$$

where $D=\operatorname{diag}(A),-L$ is a strictly lower triangular part of A and $-U$ is a strictly upper triangular part of A. If $0<r \leq \omega \leq 1$, then

$$
\rho\left(M_{A O R}{ }^{-1} N_{A O R}\right) \leq \rho\left(H_{0}\right) \leq \rho\left(M_{J}^{-1} N_{J}\right)<1,
$$

where $G_{0}=\sum_{k=1}^{\ell} M_{k}^{-1} E_{k}$ and $H_{0}=I-G_{0} A$.
Proof. Without loss of generality, we can assume that $\ell=3$. Let $A_{k}=D_{k}-$ $\bar{L}_{k}-\bar{U}_{k}$, where \bar{L}_{k} is a strictly lower triangular part of A_{k} and \bar{U}_{k} is a strictly upper triangular part of A_{k}. It can be easily seen that $\bar{L}_{k} \geq L_{k}$ and $V_{k} \geq \bar{U}_{k}$. Since $G_{0}=\sum_{k=1}^{\ell} M_{k}^{-1} E_{k}$ is nonsingular and $H_{0}=I-G_{0} A, A=G_{0}{ }^{-1}-$ $G_{0}{ }^{-1} H_{0}$. Let $B=G_{0}{ }^{-1}$ and $C=G_{0}^{-1} H_{0}$. Then $A=B-C$ and $H_{0}=B^{-1} C$. Since $B_{k}^{-1} \geq 0, C_{k} \geq 0$ and $C_{i j} \geq 0$ for $i, j, k=1,2, \ldots, \ell+1, i \neq j, M_{k}^{-1} \geq 0$ and thus $G_{0} \geq 0$. Notice that G_{0}, B and C can be written as

$$
\begin{align*}
& G_{0}=\left(\begin{array}{cccc}
B_{1}^{-1} & 0 & 0 & 0 \\
0 & B_{2}{ }^{-1} & 0 & 0 \\
0 & 0 & B_{3}{ }^{-1} & 0 \\
B_{4}{ }^{-1} C_{41} B_{1}{ }^{-1} & B_{4}{ }^{-1} C_{42} B_{2}{ }^{-1} & B_{4}{ }^{-1} C_{43} B_{3}{ }^{-1} & B_{4}{ }^{-1}
\end{array}\right), \tag{10}\\
& B=\left(\begin{array}{cccc}
B_{1} & 0 & 0 & 0 \\
0 & B_{2} & 0 & 0 \\
0 & 0 & B_{3} & 0 \\
-C_{41} & -C_{42} & -C_{43} & B_{4}
\end{array}\right), \quad C=\left(\begin{array}{cccc}
C_{1} & C_{12} & C_{13} & C_{14} \\
C_{21} & C_{2} & C_{23} & C_{24} \\
C_{31} & C_{32} & C_{3} & C_{34} \\
0 & 0 & 0 & C_{4}
\end{array}\right),
\end{align*}
$$

where $C_{i}=\frac{1-\omega}{\omega} D_{i}+\frac{\omega-r}{\omega} L_{i}+V_{i}$ for $1 \leq i \leq 4$. It can be easily seen that $C \geq 0$. Hence, we obtain $A=B-C$ is regular splitting of A. By hypothesis,
$N_{A O R}$ and N_{J} can be written as

$$
N_{A O R}=\left(\begin{array}{cccc}
\tilde{D}_{1} & C_{12} & C_{13} & C_{14} \tag{11}\\
0 & \tilde{D}_{2} & C_{23} & C_{24} \\
0 & 0 & \tilde{D}_{3} & C_{34} \\
0 & 0 & 0 & \tilde{D}_{4}
\end{array}\right), \quad N_{J}=\left(\begin{array}{cccc}
\hat{D}_{1} & C_{12} & C_{13} & C_{14} \\
C_{21} & \hat{D}_{2} & C_{23} & C_{24} \\
C_{31} & C_{32} & \hat{D}_{3} & C_{34} \\
C_{41} & C_{42} & C_{43} & \hat{D}_{4}
\end{array}\right),
$$

where $\tilde{D}_{i}=\frac{1-\omega}{\omega} D_{i}+\frac{\omega-r}{\omega} \bar{L}_{i}+\bar{U}_{i}$ and $\hat{D}_{i}=\frac{1-\omega}{\omega} D_{i}+\bar{L}_{i}+\bar{U}_{i}$ for $i=1,2,3,4$. By assumptions, $0 \leq \frac{\omega-r}{\omega}<1$ and $L_{i}+V_{i}=\bar{L}_{i}+\bar{U}_{i}$ for $1 \leq i \leq 4$. Hence

$$
\begin{align*}
\frac{\omega-r}{\omega} \bar{L}_{i}+\bar{U}_{i} & =\frac{\omega-r}{\omega}\left(L_{i}+V_{i}-\bar{U}_{i}\right)+\bar{U}_{i} \\
& =\frac{\omega-r}{\omega} L_{i}+\frac{\omega-r}{\omega}\left(V_{i}-\bar{U}_{i}\right)+\bar{U}_{i} \tag{12}\\
& \leq \frac{\omega-r}{\omega} L_{i}+\left(V_{i}-\bar{U}_{i}\right)+\bar{U}_{i}=\frac{\omega-r}{\omega} L_{i}+V_{i} \\
& \leq L_{i}+V_{i}=\bar{L}_{i}+\bar{U}_{i} .
\end{align*}
$$

From (10), (11) and (12), one obtains

$$
\begin{equation*}
N_{A O R} \leq C \leq N_{J} . \tag{13}
\end{equation*}
$$

From (13) and Lemma 1.1, one obtains,

$$
\rho\left(M_{A O R}^{-1} N_{A O R}\right) \leq \rho\left(H_{0}\right) \leq \rho\left(M_{J}^{-1} N_{J}\right)<1 .
$$

In Theorem 2.7, $M_{A O R}{ }^{-1} N_{A O R}$ and $M_{J}^{-1} N_{J}$ are the iteration matrices for the AOR method and the relaxed Jacobi method, respectively. Also notice that H_{0} is an iteration matrix for the AOR-like multisplitting method with preweighting of the form (5).

Theorem 2.8. Assume that A is an M-matrix. Let $\left(M_{k}, N_{k}, E_{k}\right), k=1,2, \ldots$, ℓ, be a multisplitting of A with M_{k}, N_{k} and E_{k} defined as in (5), where

$$
\begin{equation*}
B_{k}=\frac{1}{\omega}\left(D_{k}-\omega L_{k}\right), \quad C_{k}=\frac{1}{\omega}\left((1-\omega) D_{k}+\omega V_{k}\right), \tag{14}
\end{equation*}
$$

$D_{k}=\operatorname{diag}\left(A_{k}\right), L_{k}$ is a nonnegative strictly lower triangular matrix and V_{k} is a nonnegative matrix satisfying $V_{k}=D_{k}-L_{k}-A_{k}$ for $k=1,2, \ldots, \ell+1$. Let $\left(\tilde{M}_{k}, \tilde{N}_{k}, E_{k}\right), k=1,2, \ldots, \ell$, be a multisplitting of A with $\tilde{M}_{k}, \tilde{N}_{k}$ and E_{k} defined as in (5), except that \tilde{B}_{k} and \tilde{C}_{k} are used instead of B_{k} and C_{k},

$$
\begin{align*}
\tilde{B}_{k} & =\frac{1}{\omega(2-\omega)}\left(D_{k}-\omega L_{k}\right) D_{k}^{-1}\left(D_{k}-\omega V_{k}\right), \\
\tilde{C}_{k} & =\frac{1}{\omega(2-\omega)}\left((1-\omega) D_{k}+\omega L_{k}\right) D_{k}^{-1}\left((1-\omega) D_{k}+\omega V_{k}\right) . \tag{15}
\end{align*}
$$

If $0<\omega \leq 1$, then

$$
\rho\left(\tilde{H}_{0}\right) \leq \rho\left(H_{0}\right)<1
$$

where $G_{0}=\sum_{k=1}^{\ell} M_{k}^{-1} E_{k}, H_{0}=I-G_{0} A, \tilde{G}_{0}=\sum_{k=1}^{\ell} \tilde{M}_{k}^{-1} E_{k}$ and $\tilde{H}_{0}=$ $I-\tilde{G}_{0} A$.

Proof. Without loss of generality, we can assume that $\ell=3$. From (14) and (15), it is easy to show that $B_{k}^{-1} \geq 0$ and $\tilde{B}_{k}^{-1} \geq 0$ for $k=1,2, \ldots, \ell+1$. Hence, $G_{0} \geq 0$ and $\tilde{G}_{0} \geq 0$. Since G_{0} and \tilde{G}_{0} are nonsingular,

$$
\begin{equation*}
A=G_{0}^{-1}-G_{0}^{-1} H_{0}=\tilde{G}_{0}^{-1}-\tilde{G}_{0}^{-1} \tilde{H}_{0} \tag{16}
\end{equation*}
$$

Then we have
(17) $G_{0}=\left(\begin{array}{cccc}B_{1}^{-1} & 0 & 0 & 0 \\ 0 & B_{2}^{-1} & 0 & 0 \\ 0 & 0 & B_{3}^{-1} & 0 \\ \alpha_{1} & \alpha_{2} & \alpha_{3} & B_{4}^{-1}\end{array}\right), \quad \tilde{G}_{0}=\left(\begin{array}{cccc}\tilde{B}_{1}^{-1} & 0 & 0 & 0 \\ 0 & \tilde{B}_{2}^{-1} & 0 & 0 \\ 0 & 0 & \tilde{B}_{3}^{-1} & 0 \\ \tilde{\alpha}_{1} & \tilde{\alpha}_{2} & \tilde{\alpha}_{3} & \tilde{B}_{4}^{-1}\end{array}\right)$,
where $\alpha_{i}=B_{4}^{-1} C_{4, i} B_{i}^{-1}$ and $\tilde{\alpha}_{i}=\tilde{B}_{4}^{-1} C_{4, i} \tilde{B}_{i}^{-1}$ for $i=1,2,3$. Since $D_{k}-\omega V_{k}$ is an M-matrix and $D_{k}-\omega V_{k} \leq D_{k}, D_{k}^{-1} \leq\left(D_{k}-\omega V_{k}\right)^{-1}$. Hence, $I \leq$ $\left(D_{k}-\omega V_{k}\right)^{-1} D_{k}$. It follows that

$$
\begin{align*}
B_{k}^{-1} & \leq \omega\left(D_{k}-\omega V_{k}\right)^{-1} D_{k}\left(D_{k}-\omega L_{k}\right)^{-1} \\
& \leq \omega(2-\omega)\left(D_{k}-\omega V_{k}\right)^{-1} D_{k}\left(D_{k}-\omega L_{k}\right)^{-1}=\tilde{B}_{k}^{-1} \tag{18}
\end{align*}
$$

From (17) and (18), $G_{0} \leq \tilde{G}_{0}$. Since (16) are regular splittings of A, from Lemma $1.1 \rho\left(\tilde{H}_{0}\right) \leq \rho\left(H_{0}\right)<1$.

In Theorem 2.8, \tilde{H}_{0} and H_{0} are the iteration matrices for the SSOR-like multisplitting method with preweighting and the SOR-like multisplitting method with preweighting of the form (5), respectively.

3. Parallel implementation and application of multisplitting method with preweighting

In Section 2, we have studied convergence of a special type of multisplitting methods with preweighting for solving the linear system (1). In this section, we only introduce parallel implementation and application of the SOR-like multisplitting method with preweighting of the form (5) since those for other multisplitting methods with preweighting of the form (5) can be done similarly. We first propose a parallel implementation of the SOR-like multisplitting method with preweighting of the form (5). Let ℓ denote the number of processors to be used. For simplicity of exposition, we assume that $\ell=3$. Then, A is partitioned into a 4×4 block of the form

$$
A=\left(\begin{array}{cccc}
A_{1} & A_{12} & A_{13} & A_{14} \tag{19}\\
A_{21} & A_{2} & A_{23} & A_{24} \\
A_{31} & A_{32} & A_{3} & A_{34} \\
A_{41} & A_{42} & A_{43} & A_{4}
\end{array}\right)
$$

where the diagonal blocks A_{i} of A are square matrices. Let $A_{i}=D_{i}-L_{i}-U_{i}$ $(1 \leq i \leq 4)$, where $D_{i}=\operatorname{diag}\left(A_{i}\right)$, and L_{i} and U_{i} are strictly lower triangular
and strictly upper triangular matrices, respectively. Let

$$
\left.\begin{array}{ll}
M_{1}=\left(\begin{array}{cccc}
B_{1} & 0 & 0 & 0 \\
0 & B_{2} & 0 & 0 \\
0 & 0 & B_{3} & 0 \\
A_{41} & 0 & 0 & B_{4}
\end{array}\right), \quad M_{2}=\left(\begin{array}{ccc}
B_{1} & 0 & 0 \\
0 & B_{2} & 0 \\
0 \\
0 & 0 & B_{3} \\
0 \\
0 & A_{42} & 0
\end{array} B_{4}\right. \tag{20}
\end{array}\right),
$$

where $B_{i}=\frac{1}{\omega}\left(D_{i}-\omega L_{i}\right)$ for $1 \leq i \leq 4$ and $\omega>0$. Let

$$
E_{1}=\left(\begin{array}{cccc}
I & 0 & 0 & 0 \tag{21}\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & e_{1} I
\end{array}\right), \quad E_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & I & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & e_{2} I
\end{array}\right), \quad E_{3}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & I & 0 \\
0 & 0 & 0 & e_{3} I
\end{array}\right)
$$

where $\sum_{i=1}^{\ell} e_{i}=1$ and $e_{i}>0$ for $1 \leq i \leq \ell$. Then it is clear that $\left(M_{k}, N_{k}, E_{k}\right)$, $k=1,2,3$, is a SOR-like multisplitting of A. Hence, the SOR-like multisplitting method with preweighting is given by

$$
\begin{align*}
x_{i+1} & =H_{0} x_{i}+G_{0} b \\
& =x_{i}+G_{0}\left(b-A x_{i}\right), \quad i=0,1,2, \ldots, \tag{22}
\end{align*}
$$

where $G_{0}=\sum_{k=1}^{\ell} M_{k}^{-1} E_{k}$ and $H_{0}=I-G_{0} A$.
Making use of (20) to (22), the multisplitting method with preweighting can be executed in parallel as follows.

Algorithm 2: Parallel implementation of multisplitting METHOD WITH PREWEIGHTING

Choose an initial vector x_{0}
For $i=0,1,2, \ldots$, until convergence
For $k=1$ to ℓ \{parallel execution on ℓ processors $\}$

$$
\begin{equation*}
r^{(k)}=b^{(k)}-A^{(k)} x_{i} \tag{a1}
\end{equation*}
$$

For $k=1$ to ℓ \{parallel execution on ℓ processors $\}$
(a2) solve $B_{k} t^{(k)}=r^{(k)}$ for $t^{(k)}$
(a3) solve $B_{\ell+1} t_{k}^{(\ell+1)}=e_{k} r^{(\ell+1)}-A_{\ell+1, k} t^{(k)}$ for $t_{k}^{(\ell+1)}$
Compute $t^{(\ell+1)}=\sum_{k=1}^{\ell} t_{k}^{(\ell+1)}$ in parallel
For $k=1$ to ℓ \{parallel execution on ℓ processors\}
(a4) $\quad x_{i+1}^{(k)}=x_{i}^{(k)}+t^{(k)}$
In Algorithm 2, the superscript (k) means the k th block of a vector and the k th row block of a matrix. In (a1) and (a4), all vectors and matrices are divided into ℓ blocks of equal sizes. In (a2) and (a3), all vectors and matrices are divided into $(\ell+1)$ blocks. To obtain good load balancing among the processors, the
first ℓ blocks are divided into equal sizes and the size of the last $(\ell+1)$ th block is chosen to be small compared to the first ℓ blocks.

Next, we propose an application of the SOR-like multisplitting method with preweighting to a parallel preconditioner of Krylov subspace methods such as BiCG, GMRES, BiCGSTAB and so on [9]. If the SOR-like multisplitting method with preweighting converges, then $\rho\left(H_{0}\right)<1$ and thus $G_{0} A=I-H_{0}$ is nonsingular. It follows that

$$
A^{-1}=\left(I-H_{0}\right)^{-1} G_{0}=\sum_{i=0}^{\infty}\left(H_{0}\right)^{i} G_{0}
$$

Let $P_{s}=\sum_{i=0}^{s-1}\left(H_{0}\right)^{i} G_{0}$, where $s \geq 1$ is an integer. Since $\lim _{s \rightarrow \infty} P_{s}=A^{-1}$, P_{s} can be viewed as an approximate matrix for A^{-1}. Hence, P_{s} can be used as a preconditioner of Krylov subspace methods. In other words, $A x=b$ can be transformed into either $A P_{s} y=b$ or $P_{s} A x=c$, where $y=P_{s}{ }^{-1} x$ and $c=P_{s} b$. From now on, the preconditioner P_{s} is called the s-step preconditioner of A.

One of the main computational kernel of Krylov subspace methods with the preconditioner P_{s} is a preconditioner solver step which is to compute $P_{s} g$ for a given vector g. The efficient computation of $P_{s} g$ for a given vector g can be done as follows:

$$
\begin{aligned}
& \text { Algorithm 3: Preconditioner solver } \\
& x_{0}=0 \\
& \text { For } i=0 \text { to } s-1 \\
& \quad x_{i+1}=x_{i}+G_{0}\left(g-A x_{i}\right)
\end{aligned}
$$

where $G_{0}=\sum_{k=1}^{\ell} M_{k}^{-1} E_{k}$. Since M_{k} and E_{k} are of the form (20) and (21), Algorithm 3 can be executed completely in parallel as described in Algorithm 2. Hence, P_{s} becomes a good parallel preconditioner for Krylov subspace method. Since other computational kernels of Krylov subspace methods can be easily parallelized, Krylov subspace method with the preconditioner P_{s} can be fully parallelized among the ℓ processors.

4. Numerical results

In this section, we provide numerical results of both the SOR-like multisplitting method with preweighting described in Section 3 and Krylov subspace method with the preconditioner P_{s} proposed in Section 3 for solving $A x=b$, where A is a large sparse H-matrix. Krylov subspace method used for numerical experiments is the right preconditioned BiCGSTAB method. We also tried numerical experiments for both GMRES with the preconditioner P_{s} and FGMRES (flexible GMRES) using P_{s} 's as preconditioners, but their parallel performance results are much worse than those for the right preconditioned BiCGSTAB. So, we do not report parallel performance results for both GMRES and FGMRES. The test matrix A arises from five-point discretization of
the following elliptic second order PDE

$$
\begin{equation*}
-\left(a u_{x}\right)_{x}-\left(b u_{y}\right)_{y}+(c u)_{x}+(d u)_{y}+f u=g \tag{23}
\end{equation*}
$$

with $a(x, y)>0, b(x, y)>0, c(x, y), d(x, y)$ and $f(x, y)$ defined on a square region Ω, and with suitable boundary conditions on $\partial \Omega$ which denotes the boundary of Ω.

In all cases, the SOR-like multisplitting method with preweighting and the preconditioned BiCGSTAB was started with zero initial vector, and $e_{i}=1 / \ell$ is used for each $1 \leq i \leq \ell$. The multisplitting method with preweighting was stopped when $\left\|r_{i}\right\|_{2} /\|b\|_{2}<10^{-5}$, and the preconditioned BiCGSTAB was stopped when $\left\|r_{i}\right\|_{2} /\|b\|_{2}<10^{-8}$, where r_{i} denote the residual vector at the i-th step of the methods and $\|\cdot\|_{2}$ refers to L_{2}-norm. All numerical tests have been carried out using the IBM supercomputer Power6 H system at KISTI (Korean Institute of Science and Technology Information). All parallel codes were written in OpenMP Fortran [8] using 64-bit arithmetics. All nonzero elements of A are stored using the compressed row storage format [9]. For all timing runs, elapsed wall-clock time is measured in seconds using the IBM wall-clock timer rtc.

All test problems used in this paper are of the type (23) with the unit square region $\Omega=(0,1) \times(0,1)$ and the Dirichlet boundary condition $u(x, y)=0$ on $\partial \Omega$. Only the discretized matrix A is of importance, so the right-hand side vector b is created artificially. Therefore, the right-hand side function $g(x, y)$ in (23) is not relevant.

Example 4.1. We consider equation (23) with $a(x, y)=b(x, y)=1, c(x, y)=$ $10(x+y), d(x, y)=10(x-y)$ and $f(x, y)=0$. We have used three uniform meshes of $\Delta x=\Delta y=1 / 258, \Delta x=\Delta y=1 / 386$ and $\Delta x=\Delta y=1 / 514$ which lead to three matrices of order $n=257^{2}=66049, n=385^{2}=148225$ and $n=513^{2}=263169$, where Δx and Δy refer to the mesh sizes in the x direction and y-direction, respectively. Once the matrix A is constructed from five-point finite difference discretization of the PDE, the right-hand side vector b is chosen so that $b=A(1,1, \ldots, 1)^{T}$. Numerical results for Example 4.1 are listed in Tables 1 to 3.

Example 4.2. This example is the same as Example 4.1 except for $c(x, y)=$ $10 e^{x y}, d(x, y)=10 e^{-x y}$. We have used the same uniform meshes as in Example 4.1 and the right-hand side vector b is chosen so that $b=A(1,1, \ldots, 1)^{T}$. Numerical results for Example 4.2 are listed in Tables 4 to 6.

For all test problems, $e_{i}=1 / \ell$ is used for each $1 \leq i \leq \ell$. For $n=m^{2}$, the first ℓ blocks are divided into equal sizes of $\frac{m(m-1)}{\ell}$ and the last $(\ell+1)$ th block has order m.

In Examples 4.1 and 4.2, the SOR-like multisplitting method with preweighting was carried out for $n=257^{2}, 385^{2}$ and various values of ω. The BiCGSTAB method with the preconditioner P_{s} was carried out for $n=513^{2}$ and various values of s and ω.

Table 1. Numerical results of the SOR-like multisplitting method with preweighting for Example 4.1 with $n=66049$

$n=66049$								
$\ell=2$	$\ell=4$		$\ell=8$		$\ell=16$			
	Iter	I-time	Iter	I-time	Iter	I-time	Iter	I-time
	43129	55.0	43172	28.5	43258	15.9	43428	10.7
0.9	37136	47.3	37179	24.5	37265	13.6	37436	9.2
1.0	32342	41.6	32385	21.6	32471	11.9	32642	8.2
1.1	28420	36.3	28463	18.8	28549	10.5	28720	7.1
1.2	25151	32.1	25195	16.6	25281	9.3	25452	6.3
1.3	22385	28.5	22429	14.8	22515	8.2	22687	5.6
1.4	Does not Converge							

Table 2. Numerical results of the SOR-like multisplitting method with preweighting for Example 4.1 with $n=148225$

$n=148225$								
ω	$\ell=2$		$\ell=4$		$\ell=8$		$\ell=16$	
	Iter	I-time	Iter	I-time	Iter	I-time	Iter	I-time
0.8	88158	254.4	88216	128.1	88333	67.1	88565	40.2
0.9	75909	222.2	75968	111.7	76085	58.8	76318	34.3
1.0	66110	194.1	66169	98.2	66287	51.4	66519	30.3
1.1	58093	170.0	58152	85.6	58270	44.9	58503	26.2
1.2	51412	150.4	51472	75.8	51589	39.8	51823	23.4
1.3	45759	134.0	45819	67.6	45936	35.5	46171	21.2
1.4				oes not	Conver			

In Tables 1 to $6, \ell$ stands for the number of processors to be used, Iter the number of iterations of two iterative methods, I-time parallel execution time of two iterative methods. In Tables 3 and $6, P_{s}$ refers to the parallel preconditioner described in Section 3.

The scaling behaviors for I-time of the SOR-like multisplitting method with preweighting when $n=385^{2}$ are depicted in Figures 1 and 3 by log-log scale. The scaling behaviors for I-time of the BiCGSTAB method using preconditioner P_{2} when $n=513^{2}$ are depicted in Figures 2 and 4 by log-log scale.

5. Concluding remarks

In this paper, we have studied convergence of a special type of multisplitting methods with preweighting, and we proposed both parallel implementation of the SOR-like multisplitting method with preweighting and an application of the SOR-like multisplitting method with preweighting to a parallel preconditioner of Krylov subspace method.

For test problems used in this paper, the SOR-like multisplitting method with preweighting performed best on the IBM supercomputer Power6 H system

Figure 1. Scaling behaviors of the SOR-like multisplitting method with preweighting for Example 4.1 with $n=148225$

Figure 2. Scaling behaviors of BiCGSTAB using preconditioner P_{2} for Example 4.1 with $n=263169$

Figure 3. Scaling behaviors of the SOR-like multisplitting method with preweighting for Example 4.2 with $n=148225$

Table 3. Numerical results of BiCGSTAB using preconditioners $P_{1}, P_{2}, P_{3}, P_{4}$ for Example 4.1 with $n=263169$

$n=263169$											
ω	P_{s}	$\ell=2$		$\ell=4$		$\ell=8$		$\ell=16$		$\ell=32$	
		Iter	I-time								
0.8	1	1180	13.39	1169	6.72	1360	4.07	1231	2.10	1048	1.38
	2	543	11.83	578	6.37	551	3.13	629	1.96	561	1.26
	3	397	12.88	393	6.40	429	3.59	428	1.96	505	1.56
	4	365	15.59	398	8.56	346	3.85	365	2.19	365	1.48
0.9	1	1224	13.84	1300	7.48	1284	3.84	1306	2.22	1182	1.51
	2	555	12.04	523	5.78	607	3.46	470	1.51	517	1.15
	3	423	13.54	452	7.32	415	3.48	413	1.89	404	1.30
	4	344	14.53	308	6.63	353	3.89	325	1.97	386	1.59
1.0	1	1066	12.08	1327	7.62	1120	3.33	1176	1.97	1371	1.66
	2	589	12.77	503	5.55	559	3.16	561	1.77	484	1.06
	3	414	13.21	449	7.26	423	3.52	414	1.89	393	1.23
	4	346	14.61	324	6.94	328	3.61	339	2.02	327	1.33
1.1	1	1133	12.81	1327	7.62	1342	3.99	1199	2.03	1468	1.83
	2	820	17.84	756	8.34	799	4.53	711	2.22	640	1.41
	3	495	15.83	460	7.46	489	4.07	510	2.32	509	1.59
	4	373	15.78	320	6.87	366	4.04	327	1.96	337	1.31
1.2	1	1113	12.61	1070	6.18	1193	3.57	1221	2.08	1186	1.50
	2	1182	25.62	1236	13.58	1230	6.97	1241	3.83	1049	2.60
	3	569	18.23	616	10.20	627	5.22	488	2.25	588	1.89
	4	495	20.93	613	13.13	469	5.15	568	3.38	518	2.09
1.3	1	1560	17.71	1055	6.11	1409	4.20	1474	2.50	1453	1.86
	2	2323	50.39	2127	23.27	1992	11.25	2466	7.60	2330	5.09
	3	561	18.91	761	12.83	772	6.42	816	3.70	759	2.35
	4	1220	53.77	1201	26.64	1128	12.30	1277	7.54	1606	6.34

Table 4. Numerical results of the SOR-like multisplitting method with preweighting for Example 4.2 with $n=66409$

	$n=66409$							
	$\ell=2$		$\ell=4$		$\ell=8$		$\ell=16$	
ω	Iter	I-time	Iter	I-time	Iter	I-time	Iter	I-time
0.8	31213	40.7	31247	21.1	31310	11.7	31435	7.8
0.9	26868	35.0	26903	18.2	26966	10.1	27090	6.8
1.0	23392	30.5	23427	15.9	23490	8.8	23615	5.8
1.1	20549	26.8	20583	14.0	20647	7.8	20771	5.2
1.2	18179	23.7	18214	12.3	18277	6.9	18402	4.6
1.3	16174	21.1	16208	11.0	16272	6.1	16397	4.1
	Does not Converge							

when $\omega=1.3$, and BiCGSTAB method with the parallel preconditioner P_{s} performed best for almost all cases when $\omega=0.9$ or 1.0 and $s=2$. As can be seen in Tables 1 to 6 and Figures 1 to 4, parallel performance of the SOR-like multisplitting method with preweighting is quite efficient, and its application to

Table 5. Numerical results of the SOR-like multisplitting method with preweighting for Example 4.2 with $n=148225$

	$n=148225$							
	$\ell=2$		$\ell=4$		$\ell=8$		$\ell=16$	
ω	Iter	I-time	Iter	I-time	Iter	I-time	Iter	I-time
0.8	65054	191.0	65102	96.7	65189	51.0	65362	29.4
0.9	56004	164.3	56052	83.3	56140	43.8	56312	25.5
1.0	48764	143.0	48812	72.5	48900	38.2	49073	22.0
1.1	42841	125.5	42889	63.7	42977	33.6	43150	19.7
1.2	37905	111.2	37953	56.3	38041	29.6	38214	17.2
1.3	33728	99.0	33776	50.1	33864	26.4	34038	15.3
	Does not Converge							

Table 6. Numerical results of BiCGSTAB using preconditioners $P_{1}, P_{2}, P_{3}, P_{4}$ for Example 4.2 with $n=263169$

$n=263169$											
ω	P_{s}	$\ell=2$		$\ell=4$		$\ell=8$		$\ell=16$		$\ell=32$	
		Iter	I-time								
0.8	1	1171	13.27	1011	5.83	1248	3.73	1250	2.10	1143	1.51
	2	546	11.87	528	5.82	573	3.25	548	1.75	528	1.18
	3	438	14.02	433	7.00	413	3.45	438	1.99	415	1.33
	4	399	16.84	355	7.59	357	3.92	371	2.21	372	1.54
0.9	1	1059	12.01	961	5.53	1037	3.10	1053	1.80	1171	1.52
	2	546	11.84	495	5.45	524	2.98	520	1.64	524	1.17
	3	436	13.93	402	6.51	421	3.51	412	1.88	395	1.26
	4	357	15.04	334	7.14	348	3.83	345	2.06	351	1.44
1.0	1	1166	13.23	1187	6.83	942	2.85	1468	2.46	1169	1.52
	2	547	11.89	623	6.87	536	3.07	544	1.73	492	1.12
	3	423	13.55	409	6.65	414	3.46	446	2.02	381	1.22
	4	332	14.06	321	6.90	323	3.57	364	2.17	327	1.33
1.1	1	1039	11.48	987	5.68	1046	3.12	1398	2.35	1373	1.75
	2	655	14.31	852	9.35	552	3.14	809	2.50	666	1.46
	3	421	13.38	431	6.98	431	3.58	447	2.02	421	1.29
	4	350	14.65	393	8.40	329	3.61	326	1.94	321	1.27
1.2	1	1054	11.97	1360	7.82	1035	3.09	1215	2.06	1271	1.63
	2	1142	24.69	1016	11.13	1116	6.29	1101	3.39	1086	2.37
	3	663	21.17	643	10.26	641	5.30	469	2.12	606	1.91
	4	529	22.29	479	10.22	533	5.81	540	3.18	483	1.94
1.3	1	947	11.02	1029	5.93	1247	3.71	1406	2.39	1464	1.89
	2	1840	39.79	2177	23.80	1818	10.20	2074	6.36	2283	4.94
	3	757	24.13	886	14.30	918	7.58	916	4.10	840	2.60
	4	1077	45.38	1165	24.80	1038	11.28	1163	6.82	1307	5.02

parallel preconditioner of Krylov subspace method is quite successful. Notice that the optimal value of ω reported in this paper is not the exact one, but the best one out of numerical experiments for 7 different values of ω. If we use the

Figure 4. Scaling behaviors of BiCGSTAB using preconditioner P_{2} for Example 4.2 with $n=263169$
exact optimal value of ω, then performance results will be better than those reported in this paper.

Even though the multisplitting method with preweighting has a lot of parallism and its parallel efficiency is quite good, its performance is too slow as
compared with BiCGSTAB with the parallel preconditioner P_{s} (see Tables 1 to 6). Therefore, the multisplitting method with preweighting itself is not recommended for use, but it is recommended for use as a parallel preconditioner of Krylov subspace method in order to solve large sparse linear systems.

References

[1] A. Berman and R. J. Plemmons, Nonnegative matrices in the Mathematical sciences, Academic Press, New York, 1979.
[2] L. Elsner, Comparisons of weak regular splitting and multisplitting methods, Numer. Math. 56 (1989), no. 2-3, 283-289.
[3] A. Frommer and G. Mayer, Convergence of relaxed parallel multisplitting methods, Linear Algebra Appl. 119 (1989), 141-152.
[4] , On the theory and practice of multisplitting methods in parallel computation, Computing 49 (1992), no. 1, 63-74
[5] A. Frommer and D. B. Szyld, H-splittings and two-stage iterative methods, Numer. Math. 63 (1992), no. 3, 345-356.
[6] M. Neumann and R. J. Plemmons, Convergence of parallel multisplitting iterative methods for M-matrices, Linear Algebra Appl. 88/89 (1987), 559-574.
[7] D. P. O'Leary and R. E. White, Multisplittings of matrices and parallel solution of linear systems, SIAM J. Algebraic Discrete Methods 6 (1985), no. 4, 630-640.
[8] OpenMP Architecture Review Board, OpenMP Fortran Application Program Interface Version 2.0, 2000.
[9] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston, 1996.
[10] D. B. Szyld and M. T. Jones, Two-stage and multisplitting methods for the parallel solution of linear systems, SIAM J. Matrix Anal. Appl. 13 (1992), no. 2, 671-679.
[11] R. S. Varga, Matrix Iterative Analysis, Springer, Berlin, 2000.
[12] C. L. Wang and J. H. Zhao, Further results on regular splittings and multisplittings, Int. J. Comput. Math. 82 (2005), no. 4, 421-431.
[13] R. E. White, Multisplitting with different weighting schemes, SIAM J. Matrix Anal. Appl. 10 (1989), no. 4, 481-493.
[14] , Multisplitting of a symmetric positive definite matrix, SIAM J. Matrix Anal. Appl. 11 (1990), no. 1, 69-82.
[15] J. H. Yun, Performance of ILU factorization preconditioners based on multisplittings, Numer. Math. 95 (2003), no. 4, 761-779.

Yu Du Han
Department of Mathematics
College of Natural Sciences
Chungbuk National University
Cheonguu 361-763, Korea
Jae Heon Yun
Department of Mathematics
College of Natural Sciences
Chungbuk National University
Cheonguu 361-763, Korea
E-mail address: gmjae@chungbuk.ac.kr

[^0]: Received May 19, 2011.
 2010 Mathematics Subject Classification. 65F10, 65F15.
 Key words and phrases. multisplitting method, preweighting, preconditioner, Krylov subspace method, parallel performance.

 This work was supported by the Korea Research Foundation(KRF) grant funded by the Korea government(MEST) (No. 2009-0072541 and No. 2010-0016538).

