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PARALLEL PERFORMANCE OF MULTISPLITTING

METHODS WITH PREWEIGHTING

Yu Du Han and Jae Heon Yun

Abstract. In this paper, we first study convergence of a special type
of multisplitting methods with preweighting, and then we provide some
comparison results of those multisplitting methods. Next, we propose

both parallel implementation of an SOR-like multisplitting method with
preweighting and an application of the SOR-like multisplitting method
with preweighting to a parallel preconditioner of Krylov subspace method.

Lastly, we provide parallel performance results of both the SOR-like mul-
tisplitting method with preweighting and Krylov subspace method with
the parallel preconditioner to evaluate parallel efficiency of the proposed
methods.

1. Introduction

In this paper, we consider multisplitting methods with preweighting for solv-
ing a linear system of the form

(1) Ax = b, x, b ∈ Rn,

where A ∈ Rn×n is a large sparse H-matrix.
For a vector x ∈ Rn, x ≥ 0 (x > 0) denotes that all components of x

are nonnegative (positive), and |x| denotes the vector whose components are
the absolute values of the corresponding components of x. For two vectors
x, y ∈ Rn, x ≥ y (x > y) means that x− y ≥ 0 (x− y > 0). These definitions
carry immediately over to matrices. For a square matrix A, diag(A) denotes
a diagonal matrix whose diagonal part coincides with the diagonal part of A.
Let ρ(A) denote the spectral radius of a square matrix A. Varga [11] showed
that for any two square matrices A and B, |A| ≤ B implies ρ(A) ≤ ρ(B).

A matrix A = (aij) ∈ Rn×n is called monotone if A is nonsingular with
A−1 ≥ 0. A matrix A = (aij) ∈ Rn×n is called an M -matrix if it is a monotone
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matrix with aij ≤ 0 for i ̸= j. The comparison matrix ⟨A⟩ = (αij) of a matrix
A = (aij) is defined by

αij =

{
|aij | if i = j,

−|aij | if i ̸= j.

A matrix A is called an H-matrix if ⟨A⟩ is an M -matrix.
A representation A = M −N is called a splitting of A if M is nonsingular.

A splitting A = M − N is called regular if M−1 ≥ 0 and N ≥ 0, and it is
called weak regular if M−1 ≥ 0 and M−1N ≥ 0 [1]. It is well known that
if A = M − N is a weak regular splitting of A, then ρ(M−1N) < 1 if and
only if A−1 ≥ 0 [1, 11]. A splitting A = M − N is called an H-compatible
splitting of A if ⟨A⟩ = ⟨M⟩ − |N |. It was shown in [5] that if A is an H-matrix
and A = M − N is an H-compatible splitting of A, then ρ(M−1N) < 1. A
collection of triples (Mk, Nk, Ek), k = 1, 2, . . . , ℓ, is called a multisplitting of A
if A = Mk−Nk is a splitting of A for k = 1, 2, . . . , ℓ, and Ek’s, called weighting

matrices, are nonnegative diagonal matrices such that
∑ℓ

k=1 Ek = I.

Lemma 1.1 ([2]). Let A−1 ≥ 0 and A = M1 −N1 = M2 −N2 be weak regular
splittings. In either of the following cases:

(a) N1 ≤ N2,
(b) M1

−1 ≥ M2
−1, N1 ≥ 0,

(c) M1
−1 ≥ M2

−1, N2 ≥ 0,

the inequality ρ(M1
−1N1) ≤ ρ(M2

−1N2) holds.

The multisplitting method with postweighting which is usually called the mul-
tisplitting method has been extensively studied in the literature, see [3, 4, 6, 7,
10, 12, 14, 15]. However, the multisplitting method with preweighting has not
been studied extensively, see [4, 13]. This is the main motivation for studying
convergence of multisplitting method with preweighting.

This paper is organized as follows. In Section 2, we first study convergence
of a special type of multisplitting methods with preweighting, and then we
provide some comparison results of those multisplitting methods. In Section 3,
we propose both parallel implementation of an SOR-like multisplitting method
with preweighting and an application of the SOR-like multisplitting method
with preweighting to a parallel preconditioner of Krylov subspace method. In
Section 4, we provide parallel performance results of both the SOR-like mul-
tisplitting method with preweighting and Krylov subspace method with the
parallel preconditioner to evaluate parallel efficiency of the proposed methods.
Lastly, some concluding remarks are withdrawn.

2. Convergence of multisplitting methods with preweighting

Let (Mk, Nk, Ek), k = 1, 2, . . . , ℓ, be a multisplitting of A. Then the corre-
sponding multisplitting method with preweighting for solving Ax = b [13] is
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given by

xi+1 = H0xi +G0b

= xi +G0(b−Axi), i = 0, 1, 2, . . . ,
(2)

where

(3) G0 =
ℓ∑

k=1

Mk
−1Ek and H0 = I −G0A.

H0 = I −
∑ℓ

k=1 Mk
−1EkA is called an iteration matrix for the multisplitting

method with preweighting. Notice that then H = I−
∑ℓ

k=1 EkMk
−1A is called

an iteration matrix for the multisplitting method. By simple calculation, one
obtains

H0
T = AT

(
I −

ℓ∑
k=1

Ek(Mk
T )−1AT

)
(AT )−1.

Let Ĥ = I−
∑ℓ

k=1 Ek(Mk
T )−1AT =

∑ℓ
k=1 Ek(Mk

T )−1Nk
T . Then Ĥ is similar

to H0
T and hence ρ(H0) = ρ(Ĥ). Notice that Ĥ is an iteration matrix for

the multisplitting method corresponding to a multisplitting (Mk
T , Nk

T , Ek),
k = 1, 2, . . . , ℓ, of AT . Hence, convergence result of multisplitting method with
preweighting corresponding to a multisplitting of A can be obtained from that
of multisplitting method corresponding to a multisplitting of AT .

The multisplitting method with preweighting associated with a multisplit-
ting (Mk, Nk, Ek), k = 1, 2, . . . , ℓ, of A for solving the linear system (1) is as
follows:

Algorithm 1: Multisplitting method with preweighting
Given an initial vector x0

For i = 0, 1, . . . , until convergence
For k = 1 to ℓ {parallel execution}

Mkyk = Ek(b−Axi)

xi+1 = xi +
∑ℓ

k=1 yk

We first consider the multisplitting method with preweighting corresponding
to a special type of multisplitting (Mk, Nk, Ek), k = 1, 2, . . . , l, of A which was
first introduced by White [13] and studied further by Frommer and Mayer [4].
Let’s assume that ℓ = 3 for simplicity of exposition. Then A is partitioned into

(4) A =


A1 −C12 −C13 −C14

−C21 A2 −C23 −C24

−C31 −C32 A3 −C34

−C41 −C42 −C43 A4

 ,
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where Ai’s are square matrices. Let Ak = Bk−Ck (1 ≤ k ≤ ℓ+1) be a splitting
of Ak. Let

M1 =


B1 0 0 0
0 B2 0 0
0 0 B3 0

−C41 0 0 B4

 , E1 =


I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 e1I

 ,

M2 =


B1 0 0 0
0 B2 0 0
0 0 B3 0
0 −C42 0 B4

 , E2 =


0 0 0 0
0 I 0 0
0 0 0 0
0 0 0 e2I

 ,

M3 =


B1 0 0 0
0 B2 0 0
0 0 B3 0
0 0 −C43 B4

 , E3 =


0 0 0 0
0 0 0 0
0 0 I 0
0 0 0 e3I

 ,

Nk = Mk −A (1 ≤ k ≤ 3),

(5)

where
∑ℓ

k=1 ek = 1. Using this multisplitting (Mk, Nk, Ek), k = 1, 2, . . . , ℓ, of
A, G0 and H0 are of the form

G0 =
ℓ∑

k=1

Mk
−1Ek

=


B1

−1 0 0 0
0 B2

−1 0 0
0 0 B3

−1 0
B4

−1C41B1
−1 B4

−1C42B2
−1 B4

−1C43B3
−1 B4

−1

 ,

H0 = I −G0A =


B1

−1C1 B1
−1C12 B1

−1C13 B1
−1C14

B2
−1C21 B2

−1C2 B2
−1C23 B2

−1C24

B3
−1C31 B3

−1C32 B3
−1C3 B3

−1C34

β1 β2 β3 β4

 ,

(6)

where

βi =
ℓ∑

k=1,k ̸=i

B4
−1C4,kBk

−1Ck,i +B4
−1C4,iBi

−1Ci for i = 1, 2, . . . ℓ,

β4 =
ℓ∑

k=1

B4
−1C4,kBk

−1Ck,4 +B4
−1C4.

The following theorems are convergence results of multisplitting method
with preweighting corresponding to the multisplitting of the form (5) when A
is a monotone matrix or an H-matrix.

Theorem 2.1 ([13]). Let A−1 ≥ 0 and (Mk, Nk, Ek), k = 1, 2, . . . , ℓ, be a
multisplitting of A with Mk, Nk and Ek defined as in (5). If Ak = Bk − Ck
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is a weak regular splitting of Ak and Cij ≥ 0 (1 ≤ i, j, k ≤ ℓ + 1, i ̸= j), then

H0 ≥ 0 and ρ(H0) < 1, where H0 = I −
∑ℓ

k=1 Mk
−1EkA.

Theorem 2.2 ([4]). Let (Mk, Nk, Ek), k = 1, 2, . . . , ℓ, be a multisplitting of A
with Mk, Nk and Ek defined as in (5). If A is an H-matrix and Ak = Bk −Ck

is an H-compatible splitting of Ak for k = 1, 2, . . . , ℓ+1, then ρ(H0) < 1, where

H0 = I −
∑ℓ

k=1 Mk
−1EkA.

The following theorem provides a convergence result of the AOR-like multi-
splitting method with preweighting of the form (5) when A is an H-matrix.

Theorem 2.3. Assume that A is an H-matrix with A = D − F , where D =
diag(A). Let (Mk, Nk, Ek), k = 1, 2, . . . , ℓ, be a multisplitting of A with Mk,
Nk and Ek defined as in (5), where for k = 1, 2, . . . , ℓ+ 1

Bk =
1

ω
(Dk − γLk), Ck =

1

ω
((1− ω)Dk + (ω − γ)Lk + ωVk) ,(7)

Dk = diag(Ak), Lk is a strictly lower triangular matrix and Vk is a general
matrix satisfying Vk = Dk − Lk − Ak. If 0 < γ ≤ ω < 2

1+α and ⟨Ak⟩ =

|Dk| − |Lk| − |Vk| for k = 1, 2, . . . , ℓ + 1, then ρ(H0) < 1, where H0 = I −∑ℓ
k=1 M

−1
k EkA and α = ρ(|D|−1|F |).

Proof. Since ⟨Ak⟩ = |Dk| − |Lk| − |Vk|, the corresponding coefficients of (ω −
γ)Lk and ωVk have the same signs for k = 1, 2, . . . , ℓ+1. We first consider the
case where 0 < γ ≤ ω ≤ 1. From (7), one obtains for k = 1, 2, . . . , ℓ+ 1

⟨Bk⟩ − |Ck| = ⟨ 1
ω
(Dk − γLk)⟩ − | 1

ω
((1− ω)Dk + (ω − γ)Lk + ωVk)|

=
1

ω
(|Dk| − γ|Lk|)−

1

ω
((1− ω)|Dk|+ (ω − γ)|Lk|+ ω|Vk|)

= |Dk| − |Lk| − |Vk| = ⟨Ak⟩.

Hence, Ak = Bk −Ck is an H-compatible splitting of Ak for k = 1, 2, . . . , ℓ+1.
By Theorem 2.2, ρ(H0) < 1 for 0 < γ ≤ ω ≤ 1. Next we consider the case
where 1 < ω < 2

1+α and γ ≤ ω. For k = 1, 2, . . . , ℓ+ 1, let

C̃k =
1

ω
((ω − 1)Dk + (ω − γ)Lk + ωVk) ,

Ãk = Bk − C̃k.

Then, it can be easily seen that for k = 1, 2, . . . , ℓ+ 1,

Ãk =
2− ω

ω
Dk − Lk − Vk.

Let Ã = 2−ω
ω D − F . Then ⟨Ã⟩ = 2−ω

ω |D| − |F | is a regular splitting of ⟨Ã⟩.
Since 1 < ω < 2

1+α , ρ
(

ω
2−ω |D|−1|F |

)
= ωα

2−ω < 1. It follows that ⟨Ã⟩−1 ≥ 0

and thus Ã is an H-matrix. Since Ak = Dk −Lk −Vk, Ãk = 2−ω
ω Dk −Lk −Vk,
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which is a block diagonal component of Ã. Clearly, Ãk is an H-matrix for
k = 1, 2, . . . , ℓ+ 1. Notice that for k = 1, 2, . . . , ℓ+ 1,

⟨Bk⟩ − |C̃k| =
1

ω
(|Dk| − γ|Lk|)−

1

ω
((ω − 1)|Dk|+ (ω − γ)|Lk|+ ω|Vk|)

=
2− ω

ω
|Dk| − |Lk| − |Vk| = ⟨Ãk⟩.

Note that ⟨Ã⟩ can be written as

⟨Ã⟩ =


⟨Ã1⟩ −|C1,2| · · · −|C1,ℓ+1|

−|C2,1| ⟨Ã2⟩ · · · −|C2,ℓ+1|
...

...
. . .

...

−|Cℓ+1,1| −|Cℓ+1,2| · · · ⟨Ãℓ+1⟩

 .

For k = 1, 2, . . . , ℓ, let

M̃k =



⟨B1⟩ · · · 0 · · · 0
...

. . .
...

0 ⟨Bk⟩ 0
... 0

. . .
...

0 · · · −|Cℓ+1,k| · · · ⟨Bℓ+1⟩

 and Ñk = M̃k − ⟨Ã⟩.

Then (M̃k, Ñk, Ek), k = 1, 2, . . . ℓ, is a multisplitting of ⟨Ã⟩ of the form (5).

Since ⟨Ã⟩−1 ≥ 0 and ⟨Ãk⟩ = ⟨Bk⟩ − |C̃k| is a regular splitting of ⟨Ãk⟩ for

k = 1, 2, . . . , ℓ+ 1, ρ(H̃0) < 1 from Theorem 2.1, where

H̃0 =


⟨B1⟩−1|C̃1| ⟨B1⟩−1|C1,2| · · · ⟨B1⟩−1|C1,ℓ| ⟨B1⟩−1|C1,ℓ+1|
⟨B2⟩−1|C2,1| ⟨B2⟩−1|C̃2| · · · ⟨B2⟩−1|C2,ℓ| ⟨B2⟩−1|C2,ℓ+1|

...
...

. . .
...

...

⟨Bℓ⟩−1|Cℓ,1| ⟨Bℓ⟩−1|Cℓ,2| · · · ⟨Bℓ⟩−1|C̃ℓ| ⟨Bℓ⟩−1|Cℓ,ℓ+1|
β̃1 β̃2 · · · β̃ℓ β̃ℓ+1

 ,

β̃i =
ℓ∑

k=1,k ̸=i

⟨Bℓ+1⟩−1|Cℓ+1,k|⟨Bk⟩−1|Ck,i|+ ⟨Bℓ+1⟩−1|Cℓ+1,i|⟨Bi⟩−1|C̃i|

(1 ≤ i ≤ ℓ),

β̃ℓ+1 =
ℓ∑

k=1

⟨Bℓ+1⟩−1|Cℓ+1,k|⟨Bk⟩−1|Ck,ℓ+1|+ ⟨Bℓ+1⟩−1|C̃ℓ+1|.

Since Bk is an H-matrix for 1 ≤ k ≤ ℓ+ 1, one obtains

|Bk
−1| ≤ ⟨Bk⟩−1 and |Ck| ≤ |C̃k|.

Using these inequalities, |H0| ≤ H̃0 is obtained. Thus, ρ(H0) < 1 for 1 < ω <
2

1+α and γ ≤ ω. Therefore, ρ(H0) < 1 for 0 < γ ≤ ω < 2
1+α . □
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If γ = ω in Theorem 2.3, then Theorem 2.3 reduces to a convergence result
of the SOR-like multisplitting method with preweighting of the form (5).

Definition 2.4. A = M −N is called an SSOR-like splitting of A if

M =
1

ω(2− ω)
(D − ωL)D−1(D − ωV ),

N =
1

ω(2− ω)
((1− ω)D + ωL)D−1 ((1− ω)D + ωV ) ,

where 0 < ω < 2, D = diag(A), L is a strictly lower triangular matrix and V
is a general matrix satisfying V = D − L−A.

The following example shows that the SSOR-like splitting of an H-matrix
A = D−L−V such that ⟨A⟩ = |D|−|L|−|V | is not an H-compatible splitting
of A.

Example 2.5. Let A = D − L− V be a 2× 2 matrix defined by

A =

(
2 −3
2 4

)
, D =

(
2 0
0 4

)
, L =

(
0 0
−1 0

)
, V =

(
0 3
−1 0

)
.

It is clear that ⟨A⟩ = |D| − |L| − |V |. Since ⟨A⟩−1 ≥ 0, A is an H-matrix. By
simple calculation

M = (D − L)D−1(D − V ) =

(
2 −3
2 5

2

)
,

N = LD−1V =

(
0 0
0 − 3

2

)
.

It follows that

⟨M⟩ =
(

2 −3
−2 5

2

)
, |N | =

(
0 0
0 3

2

)
, ⟨M⟩ − |N | =

(
2 −3
−2 1

)
.

Note that A = M − N is an SSOR-like splitting of A with ω = 1. However,
⟨M⟩ − |N | ̸= ⟨A⟩, which shows that A = M − N is not an H-compatible
splitting of A.

The following theorem provides a convergence result of the SSOR-like mul-
tisplitting method with preweighting of the form (5) when A is an H-matrix.

Theorem 2.6. Assume that A is an H-matrix with A = D − F , where D =
diag(A). Let (Mk, Nk, Ek), k = 1, 2, . . . , ℓ, be a multisplitting of A with Mk,
Nk and Ek defined as in (5), where

Bk =
1

ω(2− ω)
(Dk − ωLk)Dk

−1(Dk − ωVk),

Ck =
1

ω(2− ω)

(
(1− ω)Dk + ωLk

)
Dk

−1
(
(1− ω)Dk + ωVk

)
,

(8)
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Dk = diag(Ak), Lk is a strictly lower triangular matrix and Vk is a general
matrix satisfying Vk = Dk−Lk−Ak. If 0 < ω < 2

1+α and ⟨Ak⟩ = |Dk|−|Lk|−
|Vk|, then ρ(H0) < 1, where H0 = I −

∑ℓ
k=1 M

−1
k EkA and α = ρ(|D|−1|F |).

Proof. We consider the first case where 0 < ω ≤ 1. From the assumption, one
obtains for k = 1, 2, . . . , ℓ+ 1,

⟨Ak⟩ =
1

ω(2− ω)
(|Dk| − ω|Lk|)|Dk|−1(|Dk| − ω|Vk|)

− 1

ω(2− ω)

(
(1− ω)|Dk|+ ω|Lk|

)
|Dk|−1

(
(1− ω)|Dk|+ ω|Vk|

)
.

For k = 1, 2, . . . , ℓ+ 1, let

B̃k =
1

ω(2− ω)
(|Dk| − ω|Lk|)|Dk|−1(|Dk| − ω|Vk|),

C̃k =
1

ω(2− ω)

(
(1− ω)|Dk|+ ω|Lk|

)
|Dk|−1

(
(1− ω)|Dk|+ ω|Vk|

)
.

Then ⟨Ak⟩ = B̃k − C̃k is a regular splitting of ⟨Ak⟩ for k = 1, 2, . . . , ℓ+ 1. Let
for k = 1, 2, . . . , ℓ,

M̃k =



B̃1 · · · 0 · · · 0
...

. . .
...

0 B̃k 0
... 0

. . .
...

0 · · · −|Cℓ+1,k| · · · B̃ℓ+1

 and Ñk = M̃k − ⟨A⟩.

Then (M̃k, Ñk, Ek), k = 1, 2, . . . , ℓ, is a multisplitting of ⟨A⟩ of the form (5).

Since ⟨A⟩−1 ≥ 0, ρ(H̃0) < 1 from Theorem 2.1, where

(9) H̃0 =


B̃−1

1 C̃1 B̃−1
1 |C1,2| · · · B̃−1

1 |C1,ℓ| B̃−1
1 |C1,ℓ+1|

B̃−1
2 |C2,1| B̃−1

2 C̃2 · · · B̃−1
2 |C2,ℓ| B̃−1

2 |C2,ℓ+1|
...

...
. . .

...
...

B̃−1
ℓ |Cℓ,1| B̃−1

ℓ |Cℓ,2| · · · B̃−1
ℓ C̃ℓ B̃−1

ℓ |Cℓ,ℓ+1|
β̃1 β̃2 · · · β̃ℓ β̃ℓ+1

 ,

β̃i =

ℓ∑
k=1,k ̸=i

B̃−1
ℓ+1|Cℓ+1,k|B̃−1

k |Ck,i|+ B̃−1
ℓ+1|Cℓ+1,i|B̃−1

i C̃i (1 ≤ i ≤ ℓ),

β̃ℓ+1 =
ℓ∑

k=1

B̃−1
ℓ+1|Cℓ+1,k|B̃−1

k |Ck,ℓ+1|+ B̃−1
ℓ+1C̃ℓ+1.
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Since Ak is an H-matrix, Dk − ωLk and Dk − ωVk are H-matrices for k =
1, 2, . . . , ℓ+ 1. Hence one obtains

|(Dk − ωLk)
−1| ≤ (|Dk| − ω|Lk|)−1

,

|(Dk − ωVk)
−1| ≤ (|Dk| − ω|Vk|)−1

,

|Bk
−1| ≤ B̃−1

k and |Ck| ≤ C̃k.

Using these inequalities, |H0| ≤ H̃0 is obtained. Therefore, ρ(H0) < 1 for
0 < ω ≤ 1. Next we consider the case where 1 < ω < 2

1+α . Let

Ĉk =
1

ω(2− ω)

(
(ω − 1)|Dk|+ ω|Lk|

)
|Dk|−1

(
(ω − 1)|Dk|+ ωVk

)
.

Then one obtains for k = 1, 2, . . . , ℓ+ 1,

B̃k − Ĉk =
ω

2− ω

(
2− ω

ω
|Dk| − |Lk| − |Vk|

)
.

Let Ã = |D| − ω
2−ω |F | and Ãk = 2−ω

ω |Dk| − |Lk| − |Vk| for k = 1, 2, . . . , ℓ + 1.

Then Ã = |D| − ω
2−ω |F | is a regular splitting of Ã and ω

2−ω Ãk = B̃k − Ĉk.

Since 1 < ω < 2
1+α , ρ

(
|D|−1 ω

2−ω |F |
)
= ω

2−ωρ(|D|−1|F |) = ωα
2−ω < 1. Thus,

Ã−1 ≥ 0. Note that Ã can be written as

Ã =


ω

2−ω Ã1 − ω
2−ω |C1,2| · · · − ω

2−ω |C14|
− ω

2−ω |C21| ω
2−ω Ã2 · · · − ω

2−ω |C24|
...

...
. . .

...

− ω
2−ω |Cℓ+1,1| − ω

2−ω |Cℓ+1,2| · · · ω
2−ω Ãℓ+1

 .

Let for k = 1, 2, . . . , ℓ,

M⋆
k =



B̃1 · · · 0 · · · 0
...

. . .
...

0 B̃k 0
... 0

. . .
...

0 · · · − ω
2−ω |Cℓ+1,k| · · · B̃ℓ+1

 and N⋆
k = M⋆

k − Ã.

Then (M⋆
k , N

⋆
k , Ek), k = 1, 2, . . . , ℓ, is a multisplitting of Ã of the form (5).

Since ω
2−ω Ãk = B̃k − Ĉk is a regular splitting of ω

2−ω Ãk for k = 1, 2, . . . , ℓ+ 1,

ρ(H⋆
0 ) < 1 from Theorem 2.1, where

H⋆
0 =

ω

2− ω


2−ω
ω B̃−1

1 Ĉ1 B̃−1
1 |C1,2| · · · B̃−1

1 |C1,ℓ| B̃−1
1 |C1,ℓ+1|

B̃−1
2 |C2,1| 2−ω

ω B̃−1
2 Ĉ2 · · · B̃−1

2 |C2,ℓ| B̃−1
2 |C2,ℓ+1|

...
...

. . .
...

...

B̃−1
ℓ |Cℓ,1| B̃−1

ℓ |Cℓ,2| · · · 2−ω
ω B̃−1

ℓ Ĉℓ B̃−1
ℓ |Cℓ,ℓ+1|

β⋆
1 β⋆

2 · · · β⋆
ℓ β⋆

ℓ+1

 ,
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β⋆
i =

ω

2− ω

ℓ∑
k=1,k ̸=i

B̃−1
ℓ+1|Cℓ+1,k|B̃−1

k |Ck,i|+ B̃−1
ℓ+1|Cℓ+1,i|B̃−1

i Ĉi (1 ≤ i ≤ l),

β⋆
ℓ+1 =

ω

2− ω

ℓ∑
k=1

B̃−1
ℓ+1|Cℓ+1,k|B̃−1

k |Ck,ℓ+1|+
2− ω

ω
B̃−1

ℓ+1Ĉℓ+1.

Since |B−1
k | ≤ B̃−1

k , |Ck| ≤ Ĉk and ω
2−ω > 1, |H0| ≤ H⋆

0 is obtained. Thus,

ρ(H0) < 1 for 1 < ω < 2
1+α . Therefore, ρ(H0) < 1 for all 0 < ω < 2

1+α . □

We next provide comparison results for multisplitting methods with prewei-
ghting of the form (5) when A is an M -matrix.

Theorem 2.7. Assume that A is an M -matrix. Let (Mk, Nk, Ek), k = 1, 2, . . . ,
ℓ, be a multisplitting of A with Mk, Nk and Ek defined as in (5), where Bk =
1
ω (Dk − rLk), Ck = 1

ω

(
(1 − ω)Dk + (ω − r)Lk + ωVk

)
, Dk = diag(Ak), Lk is

a nonnegative strictly lower triangular matrix and Vk is a nonnegative matrix
satisfying Vk = Dk − Lk −Ak for k = 1, 2, . . . , ℓ+ 1. Let

MAOR =
1

ω
(D − rL), NAOR =

1

ω

(
(1− ω)D + (ω − r)L+ ωU

)
,

MJ =
1

ω
D and NJ =

1

ω

(
(1− ω)D + ωL+ ωU

)
,

where D = diag(A), −L is a strictly lower triangular part of A and −U is a
strictly upper triangular part of A. If 0 < r ≤ ω ≤ 1, then

ρ(MAOR
−1NAOR) ≤ ρ(H0) ≤ ρ(MJ

−1NJ ) < 1,

where G0 =
∑ℓ

k=1 M
−1
k Ek and H0 = I −G0A.

Proof. Without loss of generality, we can assume that ℓ = 3. Let Ak = Dk −
L̄k − Ūk, where L̄k is a strictly lower triangular part of Ak and Ūk is a strictly
upper triangular part of Ak. It can be easily seen that L̄k ≥ Lk and Vk ≥ Ūk.

Since G0 =
∑ℓ

k=1 M
−1
k Ek is nonsingular and H0 = I − G0A, A = G0

−1 −
G0

−1H0. Let B = G0
−1 and C = G0

−1H0. Then A = B−C and H0 = B−1C.
Since B−1

k ≥ 0, Ck ≥ 0 and Cij ≥ 0 for i, j, k = 1, 2, . . . , ℓ+1, i ̸= j, Mk
−1 ≥ 0

and thus G0 ≥ 0. Notice that G0, B and C can be written as

G0 =


B1

−1 0 0 0
0 B2

−1 0 0
0 0 B3

−1 0
B4

−1C41B1
−1 B4

−1C42B2
−1 B4

−1C43B3
−1 B4

−1

 ,

B =


B1 0 0 0
0 B2 0 0
0 0 B3 0

−C41 −C42 −C43 B4

 , C =


C1 C12 C13 C14

C21 C2 C23 C24

C31 C32 C3 C34

0 0 0 C4

 ,

(10)

where Ci = 1−ω
ω Di +

ω−r
ω Li + Vi for 1 ≤ i ≤ 4. It can be easily seen that

C ≥ 0. Hence, we obtain A = B − C is regular splitting of A. By hypothesis,
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NAOR and NJ can be written as

(11) NAOR =


D̃1 C12 C13 C14

0 D̃2 C23 C24

0 0 D̃3 C34

0 0 0 D̃4

 , NJ =


D̂1 C12 C13 C14

C21 D̂2 C23 C24

C31 C32 D̂3 C34

C41 C42 C43 D̂4

 ,

where D̃i =
1−ω
ω Di +

ω−r
ω L̄i + Ūi and D̂i =

1−ω
ω Di + L̄i + Ūi for i = 1, 2, 3, 4.

By assumptions, 0 ≤ ω−r
ω < 1 and Li + Vi = L̄i + Ūi for 1 ≤ i ≤ 4. Hence

ω − r

ω
L̄i + Ūi =

ω − r

ω
(Li + Vi − Ūi) + Ūi

=
ω − r

ω
Li +

ω − r

ω
(Vi − Ūi) + Ūi

≤ ω − r

ω
Li + (Vi − Ūi) + Ūi =

ω − r

ω
Li + Vi

≤ Li + Vi = L̄i + Ūi.

(12)

From (10), (11) and (12), one obtains

(13) NAOR ≤ C ≤ NJ .

From (13) and Lemma 1.1, one obtains,

ρ(MAOR
−1NAOR) ≤ ρ(H0) ≤ ρ(MJ

−1NJ ) < 1. □
In Theorem 2.7, MAOR

−1NAOR and MJ
−1NJ are the iteration matrices for

the AOR method and the relaxed Jacobi method, respectively. Also notice
that H0 is an iteration matrix for the AOR-like multisplitting method with
preweighting of the form (5).

Theorem 2.8. Assume that A is an M -matrix. Let (Mk, Nk, Ek), k = 1, 2, . . .,
ℓ, be a multisplitting of A with Mk, Nk and Ek defined as in (5), where

(14) Bk =
1

ω
(Dk − ωLk), Ck =

1

ω
((1− ω)Dk + ωVk) ,

Dk = diag(Ak), Lk is a nonnegative strictly lower triangular matrix and Vk

is a nonnegative matrix satisfying Vk = Dk − Lk − Ak for k = 1, 2, . . . , ℓ + 1.
Let (M̃k, Ñk, Ek), k = 1, 2, . . . , ℓ, be a multisplitting of A with M̃k, Ñk and Ek

defined as in (5), except that B̃k and C̃k are used instead of Bk and Ck,

B̃k =
1

ω(2− ω)
(Dk − ωLk)D

−1
k (Dk − ωVk),

C̃k =
1

ω(2− ω)
((1− ω)Dk + ωLk)D

−1
k ((1− ω)Dk + ωVk) .

(15)

If 0 < ω ≤ 1, then
ρ(H̃0) ≤ ρ(H0) < 1,

where G0 =
∑ℓ

k=1 M
−1
k Ek, H0 = I − G0A, G̃0 =

∑ℓ
k=1 M̃

−1
k Ek and H̃0 =

I − G̃0A.
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Proof. Without loss of generality, we can assume that ℓ = 3. From (14) and

(15), it is easy to show that B−1
k ≥ 0 and B̃−1

k ≥ 0 for k = 1, 2, . . . , ℓ + 1.

Hence, G0 ≥ 0 and G̃0 ≥ 0. Since G0 and G̃0 are nonsingular,

(16) A = G−1
0 −G−1

0 H0 = G̃−1
0 − G̃−1

0 H̃0.

Then we have

(17) G0 =


B−1

1 0 0 0
0 B−1

2 0 0
0 0 B−1

3 0
α1 α2 α3 B−1

4

 , G̃0 =


B̃−1

1 0 0 0

0 B̃−1
2 0 0

0 0 B̃−1
3 0

α̃1 α̃2 α̃3 B̃−1
4

 ,

where αi = B−1
4 C4,iB

−1
i and α̃i = B̃−1

4 C4,iB̃
−1
i for i = 1, 2, 3. Since Dk − ωVk

is an M -matrix and Dk − ωVk ≤ Dk, D−1
k ≤ (Dk − ωVk)

−1. Hence, I ≤
(Dk − ωVk)

−1Dk. It follows that

B−1
k ≤ ω(Dk − ωVk)

−1Dk(Dk − ωLk)
−1

≤ ω(2− ω)(Dk − ωVk)
−1Dk(Dk − ωLk)

−1 = B̃−1
k .

(18)

From (17) and (18), G0 ≤ G̃0. Since (16) are regular splittings of A, from

Lemma 1.1 ρ(H̃0) ≤ ρ(H0) < 1. □

In Theorem 2.8, H̃0 and H0 are the iteration matrices for the SSOR-like mul-
tisplitting method with preweighting and the SOR-like multisplitting method
with preweighting of the form (5), respectively.

3. Parallel implementation and application of multisplitting
method with preweighting

In Section 2, we have studied convergence of a special type of multisplitting
methods with preweighting for solving the linear system (1). In this section,
we only introduce parallel implementation and application of the SOR-like
multisplitting method with preweighting of the form (5) since those for other
multisplitting methods with preweighting of the form (5) can be done simi-
larly. We first propose a parallel implementation of the SOR-like multisplitting
method with preweighting of the form (5). Let ℓ denote the number of proces-
sors to be used. For simplicity of exposition, we assume that ℓ = 3. Then, A
is partitioned into a 4× 4 block of the form

(19) A =


A1 A12 A13 A14

A21 A2 A23 A24

A31 A32 A3 A34

A41 A42 A43 A4

 ,

where the diagonal blocks Ai of A are square matrices. Let Ai = Di −Li −Ui

(1 ≤ i ≤ 4), where Di = diag(Ai), and Li and Ui are strictly lower triangular
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and strictly upper triangular matrices, respectively. Let

M1 =


B1 0 0 0
0 B2 0 0
0 0 B3 0

A41 0 0 B4

 , M2 =


B1 0 0 0
0 B2 0 0
0 0 B3 0
0 A42 0 B4

 ,

M3 =


B1 0 0 0
0 B2 0 0
0 0 B3 0
0 0 A43 B4

 , Nk = Mk −A (1 ≤ k ≤ 3),

(20)

where Bi =
1
ω (Di − ωLi) for 1 ≤ i ≤ 4 and ω > 0. Let

(21)

E1 =


I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 e1I

 , E2 =


0 0 0 0
0 I 0 0
0 0 0 0
0 0 0 e2I

 , E3 =


0 0 0 0
0 0 0 0
0 0 I 0
0 0 0 e3I

 ,

where
∑ℓ

i=1 ei = 1 and ei > 0 for 1 ≤ i ≤ ℓ. Then it is clear that (Mk, Nk, Ek),
k = 1, 2, 3, is a SOR-like multisplitting of A. Hence, the SOR-like multisplitting
method with preweighting is given by

xi+1 = H0xi +G0b

= xi +G0(b−Axi), i = 0, 1, 2, . . . ,
(22)

where G0 =
∑ℓ

k=1 Mk
−1Ek and H0 = I −G0A.

Making use of (20) to (22), the multisplitting method with preweighting can
be executed in parallel as follows.

Algorithm 2: Parallel implementation of multisplitting
method with preweighting

Choose an initial vector x0

For i = 0, 1, 2, . . . , until convergence
For k = 1 to ℓ {parallel execution on ℓ processors}

(a1) r(k) = b(k) −A(k)xi

For k = 1 to ℓ {parallel execution on ℓ processors}
(a2) solve Bkt

(k) = r(k) for t(k)

(a3) solve Bℓ+1t
(ℓ+1)
k = ekr

(ℓ+1) −Aℓ+1,kt
(k) for t

(ℓ+1)
k

Compute t(ℓ+1) =
∑ℓ

k=1 t
(ℓ+1)
k in parallel

For k = 1 to ℓ {parallel execution on ℓ processors}
(a4) x

(k)
i+1 = x

(k)
i + t(k)

In Algorithm 2, the superscript (k) means the kth block of a vector and the kth
row block of a matrix. In (a1) and (a4), all vectors and matrices are divided into
ℓ blocks of equal sizes. In (a2) and (a3), all vectors and matrices are divided
into (ℓ + 1) blocks. To obtain good load balancing among the processors, the
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first ℓ blocks are divided into equal sizes and the size of the last (ℓ+1)th block
is chosen to be small compared to the first ℓ blocks.

Next, we propose an application of the SOR-like multisplitting method with
preweighting to a parallel preconditioner of Krylov subspace methods such
as BiCG, GMRES, BiCGSTAB and so on [9]. If the SOR-like multisplitting
method with preweighting converges, then ρ(H0) < 1 and thus G0A = I −H0

is nonsingular. It follows that

A−1 = (I −H0)
−1G0 =

∞∑
i=0

(H0)
iG0.

Let Ps =
∑s−1

i=0 (H0)
iG0, where s ≥ 1 is an integer. Since lims→∞ Ps = A−1,

Ps can be viewed as an approximate matrix for A−1. Hence, Ps can be used as
a preconditioner of Krylov subspace methods. In other words, Ax = b can be
transformed into either APsy = b or PsAx = c, where y = Ps

−1x and c = Psb.
From now on, the preconditioner Ps is called the s-step preconditioner of A.

One of the main computational kernel of Krylov subspace methods with the
preconditioner Ps is a preconditioner solver step which is to compute Psg for
a given vector g. The efficient computation of Psg for a given vector g can be
done as follows:

Algorithm 3: Preconditioner solver
x0 = 0
For i = 0 to s− 1

xi+1 = xi +G0(g −Axi)

where G0 =
∑ℓ

k=1 Mk
−1Ek. Since Mk and Ek are of the form (20) and (21),

Algorithm 3 can be executed completely in parallel as described in Algorithm 2.
Hence, Ps becomes a good parallel preconditioner for Krylov subspace method.
Since other computational kernels of Krylov subspace methods can be easily
parallelized, Krylov subspace method with the preconditioner Ps can be fully
parallelized among the ℓ processors.

4. Numerical results

In this section, we provide numerical results of both the SOR-like multi-
splitting method with preweighting described in Section 3 and Krylov subspace
method with the preconditioner Ps proposed in Section 3 for solving Ax = b,
where A is a large sparse H-matrix. Krylov subspace method used for nu-
merical experiments is the right preconditioned BiCGSTAB method. We also
tried numerical experiments for both GMRES with the preconditioner Ps and
FGMRES (flexible GMRES) using Ps’s as preconditioners, but their parallel
performance results are much worse than those for the right preconditioned
BiCGSTAB. So, we do not report parallel performance results for both GM-
RES and FGMRES. The test matrix A arises from five-point discretization of
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the following elliptic second order PDE

(23) −(aux)x − (buy)y + (cu)x + (du)y + fu = g

with a(x, y) > 0, b(x, y) > 0, c(x, y), d(x, y) and f(x, y) defined on a square
region Ω, and with suitable boundary conditions on ∂Ω which denotes the
boundary of Ω.

In all cases, the SOR-like multisplitting method with preweighting and the
preconditioned BiCGSTAB was started with zero initial vector, and ei = 1/ℓ
is used for each 1 ≤ i ≤ ℓ. The multisplitting method with preweighting
was stopped when ∥ri∥2/∥b∥2 < 10−5, and the preconditioned BiCGSTAB was
stopped when ∥ri∥2/∥b∥2 < 10−8, where ri denote the residual vector at the
i-th step of the methods and ∥ · ∥2 refers to L2-norm. All numerical tests have
been carried out using the IBM supercomputer Power6 H system at KISTI
(Korean Institute of Science and Technology Information). All parallel codes
were written in OpenMP Fortran [8] using 64-bit arithmetics. All nonzero
elements of A are stored using the compressed row storage format [9]. For
all timing runs, elapsed wall-clock time is measured in seconds using the IBM
wall-clock timer rtc.

All test problems used in this paper are of the type (23) with the unit square
region Ω = (0, 1)× (0, 1) and the Dirichlet boundary condition u(x, y) = 0 on
∂Ω. Only the discretized matrix A is of importance, so the right-hand side
vector b is created artificially. Therefore, the right-hand side function g(x, y)
in (23) is not relevant.

Example 4.1. We consider equation (23) with a(x, y) = b(x, y) = 1, c(x, y) =
10(x + y), d(x, y) = 10(x − y) and f(x, y) = 0. We have used three uniform
meshes of ∆x = ∆y = 1/258, ∆x = ∆y = 1/386 and ∆x = ∆y = 1/514
which lead to three matrices of order n = 2572 = 66049, n = 3852 = 148225
and n = 5132 = 263169, where ∆x and ∆y refer to the mesh sizes in the x-
direction and y-direction, respectively. Once the matrix A is constructed from
five-point finite difference discretization of the PDE, the right-hand side vector
b is chosen so that b = A(1, 1, . . . , 1)T . Numerical results for Example 4.1 are
listed in Tables 1 to 3.

Example 4.2. This example is the same as Example 4.1 except for c(x, y) =
10exy, d(x, y) = 10e−xy. We have used the same uniform meshes as in Exam-
ple 4.1 and the right-hand side vector b is chosen so that b = A(1, 1, . . . , 1)T .
Numerical results for Example 4.2 are listed in Tables 4 to 6.

For all test problems, ei = 1/ℓ is used for each 1 ≤ i ≤ ℓ. For n = m2, the

first ℓ blocks are divided into equal sizes of m(m−1)
ℓ and the last (ℓ+1)th block

has order m.
In Examples 4.1 and 4.2, the SOR-like multisplitting method with preweight-

ing was carried out for n = 2572, 3852 and various values of ω. The BiCGSTAB
method with the preconditioner Ps was carried out for n = 5132 and various
values of s and ω.
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Table 1. Numerical results of the SOR-like multisplitting method
with preweighting for Example 4.1 with n = 66049

n = 66049
ℓ=2 ℓ=4 ℓ=8 ℓ=16

ω Iter I-time Iter I-time Iter I-time Iter I-time
0.8 43129 55.0 43172 28.5 43258 15.9 43428 10.7
0.9 37136 47.3 37179 24.5 37265 13.6 37436 9.2
1.0 32342 41.6 32385 21.6 32471 11.9 32642 8.2
1.1 28420 36.3 28463 18.8 28549 10.5 28720 7.1
1.2 25151 32.1 25195 16.6 25281 9.3 25452 6.3
1.3 22385 28.5 22429 14.8 22515 8.2 22687 5.6
1.4 Does not Converge

Table 2. Numerical results of the SOR-like multisplitting method
with preweighting for Example 4.1 with n = 148225

n = 148225
ℓ=2 ℓ=4 ℓ=8 ℓ=16

ω Iter I-time Iter I-time Iter I-time Iter I-time
0.8 88158 254.4 88216 128.1 88333 67.1 88565 40.2
0.9 75909 222.2 75968 111.7 76085 58.8 76318 34.3
1.0 66110 194.1 66169 98.2 66287 51.4 66519 30.3
1.1 58093 170.0 58152 85.6 58270 44.9 58503 26.2
1.2 51412 150.4 51472 75.8 51589 39.8 51823 23.4
1.3 45759 134.0 45819 67.6 45936 35.5 46171 21.2
1.4 Does not Converge

In Tables 1 to 6, ℓ stands for the number of processors to be used, Iter
the number of iterations of two iterative methods, I-time parallel execution
time of two iterative methods. In Tables 3 and 6, Ps refers to the parallel
preconditioner described in Section 3.

The scaling behaviors for I-time of the SOR-like multisplitting method with
preweighting when n = 3852 are depicted in Figures 1 and 3 by log-log scale.
The scaling behaviors for I-time of the BiCGSTABmethod using preconditioner
P2 when n = 5132 are depicted in Figures 2 and 4 by log-log scale.

5. Concluding remarks

In this paper, we have studied convergence of a special type of multisplitting
methods with preweighting, and we proposed both parallel implementation of
the SOR-like multisplitting method with preweighting and an application of the
SOR-like multisplitting method with preweighting to a parallel preconditioner
of Krylov subspace method.

For test problems used in this paper, the SOR-like multisplitting method
with preweighting performed best on the IBM supercomputer Power6 H system
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Figure 1. Scaling behaviors of the SOR-like multisplitting
method with preweighting for Example 4.1 with n = 148225
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Figure 2. Scaling behaviors of BiCGSTAB using precondi-
tioner P2 for Example 4.1 with n = 263169
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Figure 3. Scaling behaviors of the SOR-like multisplitting
method with preweighting for Example 4.2 with n = 148225
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Table 3. Numerical results of BiCGSTAB using preconditioners P1, P2, P3, P4

for Example 4.1 with n = 263169

n = 263169
ℓ=2 ℓ=4 ℓ=8 ℓ=16 ℓ=32

ω Ps Iter I-time Iter I-time Iter I-time Iter I-time Iter I-time
1 1180 13.39 1169 6.72 1360 4.07 1231 2.10 1048 1.38

0.8 2 543 11.83 578 6.37 551 3.13 629 1.96 561 1.26
3 397 12.88 393 6.40 429 3.59 428 1.96 505 1.56
4 365 15.59 398 8.56 346 3.85 365 2.19 365 1.48
1 1224 13.84 1300 7.48 1284 3.84 1306 2.22 1182 1.51

0.9 2 555 12.04 523 5.78 607 3.46 470 1.51 517 1.15
3 423 13.54 452 7.32 415 3.48 413 1.89 404 1.30
4 344 14.53 308 6.63 353 3.89 325 1.97 386 1.59
1 1066 12.08 1327 7.62 1120 3.33 1176 1.97 1371 1.66

1.0 2 589 12.77 503 5.55 559 3.16 561 1.77 484 1.06
3 414 13.21 449 7.26 423 3.52 414 1.89 393 1.23
4 346 14.61 324 6.94 328 3.61 339 2.02 327 1.33
1 1133 12.81 1327 7.62 1342 3.99 1199 2.03 1468 1.83

1.1 2 820 17.84 756 8.34 799 4.53 711 2.22 640 1.41
3 495 15.83 460 7.46 489 4.07 510 2.32 509 1.59
4 373 15.78 320 6.87 366 4.04 327 1.96 337 1.31
1 1113 12.61 1070 6.18 1193 3.57 1221 2.08 1186 1.50

1.2 2 1182 25.62 1236 13.58 1230 6.97 1241 3.83 1049 2.60
3 569 18.23 616 10.20 627 5.22 488 2.25 588 1.89
4 495 20.93 613 13.13 469 5.15 568 3.38 518 2.09
1 1560 17.71 1055 6.11 1409 4.20 1474 2.50 1453 1.86

1.3 2 2323 50.39 2127 23.27 1992 11.25 2466 7.60 2330 5.09
3 561 18.91 761 12.83 772 6.42 816 3.70 759 2.35
4 1220 53.77 1201 26.64 1128 12.30 1277 7.54 1606 6.34

Table 4. Numerical results of the SOR-like multisplitting method
with preweighting for Example 4.2 with n = 66409

n = 66409
ℓ=2 ℓ=4 ℓ=8 ℓ=16

ω Iter I-time Iter I-time Iter I-time Iter I-time
0.8 31213 40.7 31247 21.1 31310 11.7 31435 7.8
0.9 26868 35.0 26903 18.2 26966 10.1 27090 6.8
1.0 23392 30.5 23427 15.9 23490 8.8 23615 5.8
1.1 20549 26.8 20583 14.0 20647 7.8 20771 5.2
1.2 18179 23.7 18214 12.3 18277 6.9 18402 4.6
1.3 16174 21.1 16208 11.0 16272 6.1 16397 4.1
1.4 Does not Converge

when ω = 1.3, and BiCGSTAB method with the parallel preconditioner Ps

performed best for almost all cases when ω = 0.9 or 1.0 and s = 2. As can be
seen in Tables 1 to 6 and Figures 1 to 4, parallel performance of the SOR-like
multisplitting method with preweighting is quite efficient, and its application to
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Table 5. Numerical results of the SOR-like multisplitting method
with preweighting for Example 4.2 with n = 148225

n = 148225
ℓ=2 ℓ=4 ℓ=8 ℓ=16

ω Iter I-time Iter I-time Iter I-time Iter I-time
0.8 65054 191.0 65102 96.7 65189 51.0 65362 29.4
0.9 56004 164.3 56052 83.3 56140 43.8 56312 25.5
1.0 48764 143.0 48812 72.5 48900 38.2 49073 22.0
1.1 42841 125.5 42889 63.7 42977 33.6 43150 19.7
1.2 37905 111.2 37953 56.3 38041 29.6 38214 17.2
1.3 33728 99.0 33776 50.1 33864 26.4 34038 15.3
1.4 Does not Converge

Table 6. Numerical results of BiCGSTAB using preconditioners P1, P2, P3, P4

for Example 4.2 with n = 263169

n = 263169
ℓ=2 ℓ=4 ℓ=8 ℓ=16 ℓ=32

ω Ps Iter I-time Iter I-time Iter I-time Iter I-time Iter I-time
1 1171 13.27 1011 5.83 1248 3.73 1250 2.10 1143 1.51

0.8 2 546 11.87 528 5.82 573 3.25 548 1.75 528 1.18
3 438 14.02 433 7.00 413 3.45 438 1.99 415 1.33
4 399 16.84 355 7.59 357 3.92 371 2.21 372 1.54
1 1059 12.01 961 5.53 1037 3.10 1053 1.80 1171 1.52

0.9 2 546 11.84 495 5.45 524 2.98 520 1.64 524 1.17
3 436 13.93 402 6.51 421 3.51 412 1.88 395 1.26
4 357 15.04 334 7.14 348 3.83 345 2.06 351 1.44
1 1166 13.23 1187 6.83 942 2.85 1468 2.46 1169 1.52

1.0 2 547 11.89 623 6.87 536 3.07 544 1.73 492 1.12
3 423 13.55 409 6.65 414 3.46 446 2.02 381 1.22
4 332 14.06 321 6.90 323 3.57 364 2.17 327 1.33
1 1039 11.48 987 5.68 1046 3.12 1398 2.35 1373 1.75

1.1 2 655 14.31 852 9.35 552 3.14 809 2.50 666 1.46
3 421 13.38 431 6.98 431 3.58 447 2.02 421 1.29
4 350 14.65 393 8.40 329 3.61 326 1.94 321 1.27
1 1054 11.97 1360 7.82 1035 3.09 1215 2.06 1271 1.63

1.2 2 1142 24.69 1016 11.13 1116 6.29 1101 3.39 1086 2.37
3 663 21.17 643 10.26 641 5.30 469 2.12 606 1.91
4 529 22.29 479 10.22 533 5.81 540 3.18 483 1.94
1 947 11.02 1029 5.93 1247 3.71 1406 2.39 1464 1.89

1.3 2 1840 39.79 2177 23.80 1818 10.20 2074 6.36 2283 4.94
3 757 24.13 886 14.30 918 7.58 916 4.10 840 2.60
4 1077 45.38 1165 24.80 1038 11.28 1163 6.82 1307 5.02

parallel preconditioner of Krylov subspace method is quite successful. Notice
that the optimal value of ω reported in this paper is not the exact one, but the
best one out of numerical experiments for 7 different values of ω. If we use the
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Figure 4. Scaling behaviors of BiCGSTAB using precondi-
tioner P2 for Example 4.2 with n = 263169

exact optimal value of ω, then performance results will be better than those
reported in this paper.

Even though the multisplitting method with preweighting has a lot of par-
allism and its parallel efficiency is quite good, its performance is too slow as
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compared with BiCGSTAB with the parallel preconditioner Ps (see Tables 1
to 6). Therefore, the multisplitting method with preweighting itself is not rec-
ommended for use, but it is recommended for use as a parallel preconditioner
of Krylov subspace method in order to solve large sparse linear systems.
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