• 제목/요약/키워드: Parallel Machine

검색결과 506건 처리시간 0.029초

이종 병렬설비에서 총납기지연 최소화를 위한 강화학습 기반 일정계획 알고리즘 (Scheduling Algorithm, Based on Reinforcement Learning for Minimizing Total Tardiness in Unrelated Parallel Machines)

  • 이태희;김재곤;유우식
    • 대한안전경영과학회지
    • /
    • 제25권4호
    • /
    • pp.131-140
    • /
    • 2023
  • This paper proposes an algorithm for the Unrelated Parallel Machine Scheduling Problem(UPMSP) without setup times, aiming to minimize total tardiness. As an NP-hard problem, the UPMSP is hard to get an optimal solution. Consequently, practical scenarios are solved by relying on operator's experiences or simple heuristic approaches. The proposed algorithm has adapted two methods: a policy network method, based on Transformer to compute the correlation between individual jobs and machines, and another method to train the network with a reinforcement learning algorithm based on the REINFORCE with Baseline algorithm. The proposed algorithm was evaluated on randomly generated problems and the results were compared with those obtained using CPLEX, as well as three scheduling algorithms. This paper confirms that the proposed algorithm outperforms the comparison algorithms, as evidenced by the test results.

Hybrid Flow Shop with Parallel Machines at the First Stage and Dedicated Machines at the Second Stage

  • Yang, Jaehwan
    • Industrial Engineering and Management Systems
    • /
    • 제14권1호
    • /
    • pp.22-31
    • /
    • 2015
  • In this paper, a two-stage hybrid flow shop problem is considered. Specifically, there exist identical parallel machines at stage 1 and two dedicated machines at stage 2, and the objective of the problem is to minimize makespan. After being processed by any machine at stage 1, a job must be processed by a specific machine at stage 2 depending on the job type, and one type of jobs can have different processing times on each machine. First, we introduce the problem and establish complexity of several variations of the problem. For some special cases, we develop optimal polynomial time solution procedures. Then, we establish some simple lower bounds for the problem. In order to solve this NP-hard problem, three heuristics based on simple rules such as the Johnson's rule and the LPT (Longest Processing Time first) rule are developed. For each of the heuristics, we provide some theoretical analysis and find some worst case bound on relative error. Finally, we empirically evaluate the heuristics.

Node Label에 의한 기본적 Data Flow Machine 모델 (A Preliminary Architecture for a Data Flow Machine Model with Node Labelling)

  • 김원섭;박희순
    • 대한전기학회논문지
    • /
    • 제34권8호
    • /
    • pp.301-307
    • /
    • 1985
  • The first four generations of computers are all based on a single basic design: the Von Neuman Processor, which is sequential and does one operation at a time. Efforts to develop concurrent or parallel computers have been carried on for many years. Data flow approach is significant in these efforts to make high speed parallel machines and expected a great deal of parallelism. In this paper we propose a preliminary data Flow Machine Model operating asynchronously on the base of Node Labelling. We introduce a concept of Node Labeling for this purpose which is relevant to the Data dependency and Parallelism. And we explain how the Node Tokens are fired in the proposed system.

  • PDF

Connection Machine CM-2상에서 신경망군(群)의 병렬 구현 (Parallel Implementation of A Neural Network Ensemble on the Connection Machine CM-2)

  • 김대진
    • 전자공학회논문지C
    • /
    • 제34C권1호
    • /
    • pp.28-41
    • /
    • 1997
  • This paper describes a parallel implementation of a neurla network ensemble developed for object recognition on the connection machine CM-2. The implementation ensures that multiple networks are implemented simultaneously starting from different initial weights and all training samples are applied to each network by one sample per a copy of each network. When compared with a sequential implementation, this accelerates the computation speed by O(N.m.n) where N, m, and n are the network, respectively. The speedup in the computation time and the convergence characteristics of sthe modified backpropagation learning precedure were evaluated by two-dimensional object recognition problem.

  • PDF

PARALLEL DYNAMIC OCTAL COMPACT MAPPING

  • Min, Yong-Sik
    • Journal of applied mathematics & informatics
    • /
    • 제3권1호
    • /
    • pp.35-46
    • /
    • 1996
  • This paper suggests a new coding method for the parallel machine which compresses the data be reducing redundancy. Paral-lel Dynamic octal Compact Mapping (PDOCM) compresses at least 1 byte per word compared with other coding techniques and achieves a 54. 188-fold speedup with 64 processors to transmit 10 million charac-ters.

육면형 병렬기구에서의 조인트 오차의 영향 (Effect of Joint Errors in a Cubic Parallel Device)

  • 임승룡;최우천;송재복;홍대희
    • 한국정밀공학회지
    • /
    • 제18권6호
    • /
    • pp.87-92
    • /
    • 2001
  • An error analysis is very important for a precision machine to estimate its performances. This study proposes a new parallel device, cubic parallel manipulator. Errors of the proposed cubic parallel manipulator include upper and down universal joint errors, due to the directional changes in the forces in the links, and actuation errors. An error analysis is presented based on an error model formed through the relation between the universal joint errors of the cubic parallel manipulator and the end effector accuracy. The analysis shows that the method can be used in predicting the accuracy of other cubic parallel devices.

  • PDF

링크의 강성이 육면형 병렬 기구 오차에 미치는 영향 (Effect of Link Stiffness on Error of Cubic Parallel Manipulator)

  • 강경우;임승룡;최우천
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.479-482
    • /
    • 2001
  • An error analysis is very important for a precision machine to estimate its performances. This study proposes a new parallel device. cubic parallel manipulator. There are so many error sources in this mechanism. Errors of the proposed cubic parallel vary with the stiffness of the manipulator. The stiffness of each leg depends on the direction of the actuation force and its direction. In this paper, the stiffness of the manipulator is calculated and the position errors and the orientation errors are predicted with the platform moving. The analysis shows that the method can be used in predicting the accuracy of other parallel devices and in designing a parallel manipulator.

  • PDF

3차원 작업영역에서 링크 강성이 육면형 병렬 기구 오차에 미치는 영향 (Effect of Link Stiffness on Error of Cubic Parallel Manipulator in 3D Workspace)

  • 박성철;임승룡;김현수;최우천;송재복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.397-401
    • /
    • 1997
  • An error analysis is very important for a precision machine to estimate its performances. This study deals with error of a new parallel device, cubic parallel manipulator. There are so many error sources in this mechanism. Errors of the cubic parallel device vary depending on the stiffness of the manipulator. The stiffness of each link depends on the directions of the link and actuation force. In this paper, the stiffness of the manipulator is calculated by ARAQUS and the position and orlentation errors are predicted within a given workspace. The analysis shows that the method can be used in predicting the accuracy of other parallel devices and in designing parallel devices.

  • PDF

Error Model and Accuracy Analysis of a Cubic Parallel Device

  • Lim, Seung-Reung;Park, Woo-Chun;Song, Jae-Bok;Daehie Hong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권4호
    • /
    • pp.75-80
    • /
    • 2001
  • An error analysis is very important to estimate performance of a precision machine. This study proposes an error analysis for a new parallel device, a cubic parallel device. The cubic parallel manipulator has error sources including upper and lower universal joint errors due to the directional changes in the link and actuation errors. The maximum errors of the end effector are affected by the axial direction changes of each links and the clearances of the universal joints when the parallel manipulator is moving along a path. It is found that the changes of errors mostly occur at the positions where the directions of exerting link forces shift. The error analysis is based on an error model formed from the relation between the universal point errors and the end-effector accuracy. The analysis method can be also used in predicting the accuracy of other parallel devices.

  • PDF