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ABSTRACT 

In this paper, a two-stage hybrid flow shop problem is considered. Specifically, there exist identical parallel machines 
at stage 1 and two dedicated machines at stage 2, and the objective of the problem is to minimize makespan. After 
being processed by any machine at stage 1, a job must be processed by a specific machine at stage 2 depending on the 
job type, and one type of jobs can have different processing times on each machine. First, we introduce the problem 
and establish complexity of several variations of the problem. For some special cases, we develop optimal polynomial 
time solution procedures. Then, we establish some simple lower bounds for the problem. In order to solve this NP-
hard problem, three heuristics based on simple rules such as the Johnson’s rule and the LPT (Longest Processing Time 
first) rule are developed. For each of the heuristics, we provide some theoretical analysis and find some worst case 
bound on relative error. Finally, we empirically evaluate the heuristics. 
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1.  INTRODUCTION 

In this paper, a two-stage hybrid flow shop problem 
is considered. Specifically, there exist identical parallel 
machines at stage 1 and two dedicated machines at stage 
2, and the objective is to minimize makespan. After 
being processed by any machine at stage 1, a job must 
be processed by a specific machine at stage 2 depending 
on the job type. One type of jobs can have different 
processing times on each machine. If a job can be pro-
cessed only by a subset of machines, the environment is 
called dedicated machines or machine eligibility (Ribas 
et al., 2010). As in Yang (2013), we say that a machine 
is dedicated to a specific job type if a job which belongs 
to the particular type can be processed only by the 
dedicated machine. The job preemption is not allowed, 
and we assume no setup times between the two stages. 

Also, all jobs and machines are available at time zero. 
A flow shop scheduling problem is called hybrid if 

the problem has more than one machine at least at one 
stage. We can find numerous real world examples of the 
hybrid flow shop scheduling problems. An example can 
be found in some flexible manufacturing systems where 
each production stage is either a flexible machine or a 
flexible manufacturing cell (Lee and Variaktarakis, 1994; 
Zijm and Nelissen, 1990). Another example can be found 
in the process industry where multiple servers (machines) 
are available at each stage (Brah and Hun-sucker, 1991). 
For the further review on general hybrid scheduling 
problems, see Ribas et al.(2010) and Ruiz and Vazquez-
Rodriguez (2010). 

If there exists single machine at each of the two 
stages, then the problem is solvable in ( log )O n n  by John-
son’s algorithm (Johnson, 1954) where n is the number 
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of jobs. For other cases where either of the two stages 
has more than one machine, Hoogeveen et al. (1996) 
show that the hybrid flow shop scheduling problems 
with the objective of minimizing makespan are unary 
NP-complete both in the preemptive and the non-pre-
emptive case. Regarding the solution procedures, re-
searchers have developed several branch and bound 
algorithms and heuristic methods for the problems under 
various conditions (Brah and Hunsucker, 1991; Rajen-
dran and Chaudihari, 1992; Deal and Hunsucker, 1991; 
Gupta, 1988; Gupta and Tunc, 1991; Gupta, et al., 1997; 
Hunsucker, 1992). 

In this paper, we consider a special type of the hy-
brid flow shop scheduling problem where there are iden-
tical parallel machines at stage 1 and two dedicated ma-
chines at stage 2. We can easily find examples where 
there exist dedicated machines at one of the stages in 
real world situations. For example, different products go 
through the same fabrication stage and depending speci-
fications of the products, they are processed on different 
machines at final assembly. Lin and Liao (2003) consi-
der a label sticker manufacturing company. At stage 1, 
there exists single high speed machine called calender 
which is used to glue the surface material and liner 
together to produce label sticker. Stage 2 has two types 
of cutting machines depending on cutting pattern required 
by specifications of the products. Some other examples 
can be found in process industry such as chemical and 
pharmaceutical industries. 

Riane et al. (2002) first considered the hybrid flow 
shop scheduling problem where there exist two dedicated 
machines at stage 2 but with only one machine at stage 1. 
They develop three heuristics which run in polynomial 
time and one dynamic programming algorithm which 
runs in exponential time. They empirically evaluate their 
solution procedures. A similar problem is considered by 
Cheng et al. (2004). However, they assume setup times 
at stage 1 to switch processing from a job of one type to 
a job of another type. Each type of jobs need a dedicated 
machine and one type of jobs have the same processing 
time. For the case where there exist only two types of 
jobs, they develop an exact algorithm which runs in pol-
ynomial time. Lin and Lio (2003) consider a similar 
environment with the objective of minimizing weighted 
maximal tardiness. They develop a heuristic and empi-
rically evaluate the heuristic. Yang (2010) establishes 
the complexity problem and shows that the decision 
version of the problem with one machine at stage 1 is 
unary NP-complete. Also, there exist some researches 
for problems with more than two dedicated machines at 
stage 2 but they assume only one machine at stage 1 
(Wang and Liu, 2013). 

In the next two sections, we introduce notation and 
present some basic results. Then, we consider some 
special cases based on the characteristics of the pro-
cessing time at each stage. For some special cases, we 
develop optimal polynomial time solution procedures, 
and for some other cases, we establish their complexity. 

In Sections 5 and 6, we develop several lower bounds 
for the problem and three intuitive heuristics for the 
general case, respectively. The three heuristics are based 
on the simple rules such as the Johnson’s rule and the 
LPT (Longest Processing Time first). Then, for each of 
the heuristics, we provide some theoretical analysis, find 
asymptotically tight worst case bound on relative error 
for one heuristic, and present some upper bounds for the 
other heuristics. Finally, we empirically evaluate the 
heuristics, summarize our work, and discuss the future 
research direction. 

2.  NOTATION 

The decision variables are 
 
σ = schedule of all jobs 

iσ = schedule of jobs on machine i for {1, 2, ,i m∈ +  
1, 2}m+ +  where m is the number of machines at stage 1. 

 
Other notation includes 
 
n = number of jobs 
m = number of machines at stage 1 
N = set of jobs = {1, 2, , }n  
M = set of machines at stage 1 = {1, 2, , }m  

iM = machine i for { 1, 2}i M m m∈ ∪ + +  
in = number of jobs processed on m iM +  for 1,2=i  
iN = set of jobs processed on m iM +  for = 1, 2i  

1 jp = processing time of job j at stage 1 for j N∈  
ijp = processing time of job j on 1m iM + −  for = 2, 3i  and 

j N∈  
( )j iC σ = completion time of job j on iM  in σ  for i M∈  

{ 1, 2}m m∪ + +  and j N∈  
( )jC σ = completion time of job j in schedule σ  for j N∈  

*σ = an optimal schedule 
*z = value of optimal schedule 

*.σ  
 
Observe that ijp  does not exist if job j does not 

belong to iN  for i M∈  and ,j N∈  and 1 2= .n n n+  Also, 
jobs in iN  can only be processed by m iM +  for {1, 2}i∈  
at stage 2. When there exists no confusion, we replace 

( )jC σ  and ( )j iC σ  with jC  and ,ijC  respectively. We 
let [ ]j  indicate the job in the jth position in schedule 

.σ  For example, 1[4]p  is the processing time on 1M  of 
the fourth job in schedule .σ  We classify our problem 
according to the standard classification scheme for 
scheduling problems (Graham et al., 1979). In the three 
field notation of 1 2 3 1| | ,α α α α  describes the machine 
structure, 2α  gives the job characteristics and restrictions, 
and 3α  defines the objective. We extend this scheme to 
provide two-stage hybrid flow shop scheduling in the 

1α  field as suggested by Gupta et al. (1997). Hence, we 
refer to the problem of minimizing makespan in a two-
stage hybrid flow shop with arbitrary number of machines 
at stage 1 and one machine at stage 2 as 2( , 1) || .maxF P C  
Since our problem has dedicated machines at stage 1, 
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we denote the problem as 2( , 2 ) || maxF P d C  where “d” at 
1α  denotes dedicated machines. 

A schedule defines a job order for each machine, 
and in this paper, a permutation schedule is a schedule 
in which a sequence of jobs in iN  on any machine at 
stage 1 is a subsequence of the sequence on m iM +  at 
stage 2 for {1, 2}.i∈  For 2( , 2 ) || ,maxF P d C  the jobs are 
available at the start of the planning process. Also, no 
preemptions are allowed. 

3.  PRELIMINARY RESULTS 

In this section, we establish some properties of an 
optimal schedule. Inserted idle time occurs when a 
machine is intentionally kept idle even if there exists a 
waiting job. Since there are no restrictions that delay 
jobs, we have the following result. 

 
Lemma 1. For problem 2( , 2 ) || ,maxF P d C  there exists an 
optimal schedule without inserted idle time on iM  for 

{ 1, 2}.i M m m∈ ∪ + +  
 
The following lemma establishes that there exists 

an optimal permutation schedule. 
 

Lemma 2. For problem 2( , 2 ) || ,maxF P d C  there exists an 
optimal permutation schedule.  
Proof. A simple pairwise interchange argument proves 
the result. □  

 
As a result of Lemma 2, we only consider a 

permutation schedule, and hence, a schedule can be 
described by a job order. 

The next result establishes that our problem can be 
easily solved by solving some other related problem. 
Consider problem 2(2 , ) || maxF d P C  which is a mirror image 
problem of 2( , 2 ) || maxF P d C  such that jobs at stage 1 on 
one problem is jobs at stage 2 on the other problem and 
vice versa. For convenience, we call this problem M-
problem where M stands for Mirror. Then, we have the 
following result. 

 
Lemma 3. An optimal schedule for problem 2( , 2 )F P d  
|| maxC  can be easily obtained from an optimal schedule 
for its M-problem and vice versa. 
 
Proof. Consider an optimal schedule σ  for problem 2F  
(2 , ) || .maxd P C  Also consider an M-problem of problem 

2(2 , ) || .maxF d P C  As a schedule for the M-problem, con-
sider schedule σ ′  where the sequence of jobs is reversed 
from ,σ  jobs at stage 1 are scheduled at stage 2, and 
jobs at stage 2 are scheduled at stage 1. Also, let σ ′  have 
no inserted idle time except for the first jobs at stage 1 
so that all jobs are delayed as much as possible without 
increasing the makespan. Then, it can be seen that σ ′  is 
a feasible schedule for the M-problem and makespan of 

σ ′  is the same as that of .σ  

We now show that σ ′  is an optimal schedule for 
the M-problem. Suppose that σ ′  is not an optimal sche-
dule for the M-problem. Then, there must be a schedule 
with a smaller makespan for the M-problem and from 
this schedule, we can create a better schedule for pro-
blem 2(2 , ) || .maxF d P C  This contradicts that σ  is an op-
timal schedule. Therefore, σ ′  is an optimal schedule for 
the M-problem. □ 

 
Remark 1. Note that jobs in σ ′  in the previous proof 
can be expedited so that it can become the schedule 
without any inserted idle time. 

4.  COMPLEXTY AND SPECIAL CASES 

In this section, we establish complexity of the pro-
blem under various conditions and examine some special 
cases. First, the general version of problem 2( , 2 ) ||F P d  

maxC  is unary NP-complete since 2(1, 2 ) || maxF d C  is unary 
NP-complete (Yang, 2010). Recall that the Johnson’s rule 
generates an optimal schedule for problem 2 || maxF C  
(Johnson, 1954). We begin by the following two small 
theorems which establish complexity of some special 
cases of the problem. 

 
Theorem 1. If = 2m  and 1 2( ) = ,N or N ∅  then the pro-
blem is still unary NP-complete. 
 
Proof. If = 2m  and 1 2( ) = ,N or N ∅  then the problem 
becomes 2( 2, 1) || ,maxF P C  and problem 2( 2, 1) || maxF P C  
is unary NP-complete (Hoogeveen et al., 1996). □ 

 
Theorem 2. If 1, 2,= = 0m j m jp p+ +  for all j N∈  and there 
exists a fixed number of machines at stage 1, then the 
problem is binary NP-complete. 
 
Proof. If 1, 2,= = 0m j m jp p+ +  for all ,j N∈  then the problem 
is identical to || .maxPm C  Hence, the result holds. □ 

 
Theorem 3. If 1, 2,= =m j m jp p p+ +  for all j N∈  and p ≤  

1,{ }min j N jp∈  and there is a fixed number of machines at 
stage 1, then the problem is binary NP-complete. 
 
Proof. Since 1{ },min j N jp p∈≤  any schedule which gene-
rates the shortest completion at stage 1 is optimal. Hence, 
the problem is identical to || maxPm C  and hence, the re-
sult holds. □ 
 

We now introduce a simple algorithm which gene-
rates an optimal schedule for a special case of problem 

2(2 , ) || maxF d P C  where processing times at stage 2 are 
identical. 

 
Algorithm A1 
1. Sort jobs in iN  in an increasing order of their proces-

sing time at stage 1 for = 1, 2.i  
Schedule the jobs on their dedicated machines at 
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stage 1. 
2. Schedule jobs on the first available machine at stage 2 

in their completion time order at stage 1 without any 
inserted idle time. 

3. Calculate and output ,maxC  and stop. 
 
Algorithm A1 runs in ( log )O n n  time. The resulting 

solution is a permutation schedule where there is no 
inserted idle time on any machine. 

 
Theorem 4. For problem 2(2 , ) || ,maxF d P C  if processing 
times at stage 2 are identical, then algorithm A1 gene-
rates an optimal schedule. 
 
Proof. Observe that the first job scheduled by Algorithm 
A1 generates the smallest completion time since it sche-
dules jobs in an increasing order of their processing time 
at stage 1 and all processing times at stage 2 are identi-
cal. Also, observe that kth job at stage 2, which is selec-
ted to be scheduled on iM  for {1, 2}i∈  should have the 
smallest completion time at stage 2 in any partial sche-
dule of k jobs in N for {1, 2, , }k n∈  since the A1 
schedules jobs at stage 1 in an increasing order of their 
processing time and it also schedules jobs at stage 2 in 
their completion time order at stage 1 without inserted 
idle time. This implies that the A1 generates the smallest 
completion time for nth job, and therefore, the A1 
generates an optimal schedule for the given problem. □ 

 
Corollary 1. For problem 2( , 2 ) || ,maxF P d C  if processing 
times at stage 1 are identical, then it is solvable in a 
polynomial time. 
 
Proof. An M-problem for 2( , 2 ) || maxF P d C  can be cons-
tructed and this problem can be solvable in polynomial 
time by using Algorithm A1. By reversing the job se-
quence and switching stages of jobs, an optimal sche-
dule for problem 2( , 2 ) || maxF P d C  can be obtained from 
Lemma 3. □ 

5.  LOWER BOUNDS 

We establish several lower bounds on the value of 
a schedule. These lower bounds are used in the analysis 
of the heuristics and the computational experiment. For 
notational convenience, we define some useful notation. 
Let 1 11 12 1= nP p p p+ + +  and 1 2=i i i inP p p p+ + +  where 

> 0ijp  only if job 1ij N −∈  for = 2, 3.i  All bounds are 
based on the condition that there is no wait for 1mM +  
and 2.mM +  The first bound assumes that each job is pro-
cessed as quickly as possible on 1mM +  and 2.mM +  

 
Lemma 4. 

1
1 2 1 3

1 2

= max{ { } , { } }.min minL
max j j

j N j N
C z p P p P

∈ ∈
≥ + +  

Proof. For job ij N∈ , 

[ ] 1 [ ]
=1

{ }min
j

j j m i k
j N ki

C p p +
∈

≥ +∑  

 
where [ ] = 0m i kp +  if kth job is not processed on m iM +  
for {1, 2}.i∈  Then, the result follows. □ 

The next bound assumes that each job is processed 
as quickly as possible on iM  for .i M∈  

 
Lemma 5. 

1
=12

2 3
1 2

= { min{ { }, { }}.min min

n

j
jL

max j j
j N j N

p
C z p p

m ∈ ∈
≥ +

∑
 

 
Proof. The last job at stage 1 should complete no sooner 
than 1=1

/ .n
jj

p m∑  Then, the result follows. □ 
 
Finally, the next bound assumes that an optimal 

makespan is no smaller than the processing time of the 
biggest job. 

 
Lemma 6. 

3
1 1, 2,= { }.maxL

max j m j m j
j N

C z p p p+ +
∈

≥ + +  

Proof. The optimal makespan is no smaller than the 
biggest job in N. Then, the result follows. □ 
 

We use 
1 2, ,L Lz z  and 

3Lz  to bound 
*z  from below. 

6.  HEURISTICS 

In this section, we introduce three intuitive heuri-
stics which are all based on the simple scheduling rules 
such as the Johnson’s rule, the LPT rule and the List 
Scheduling (LS) rule. Note that the LS rule schedules 
the first available job on the first available machine. 

First, the two heuristic procedures we develop use 
the following well known rule called Johnson’s rule 
(Johnson, 1954), which is optimal for problem 2 || .maxF C  
The following is a brief description of the Johnson’s rule 
(Lee and Vairaktarakis, 1994). 

 
Johnson’s Rule: Job i precedes job j if 1 2min{ , }i jp p ≤  

1 2min{ , }j ip p . 
 
We begin by describing the first heuristic, Heuristic 

H1. The H1 is simple and intuitive and uses the John-
son’s rule. Furthermore, it has the asymptotically tight 
worst case bound on relative error of 3-2/m, which seems 
to be the best known bound for the problem 2( 2 , 1)F P d  
|| .maxC  We formally describe the H1 as follows. 

 
Heuristic H1 
1. Apply the Johnson’s rule for jobs in each of 1N  and 

2N  separately, and schedule jobs in iN  on iM  and m iM +  
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for = 1, 2.i  
Let 

iσ  be a schedule for iN  for = 1, 2.i  
2. Find the first available machine among M, and let 

kM  and kT  be this machine and the earliest time kM  
is available, respectively. 

3. Find the first available job, job r which starts later 
than kT  at stage 1. 
If there is no such job, then go to Step 4. Otherwise, 
schedule job r on kM  and adjust the remaining sche-
dule without changing the order of jobs on m iM +  so 
that there is no inserted idle time for = 1, 2.i  

4. Calculate and output ,maxC  and stop. 
 
Heuristic H1 runs in ( log )O n n  time. The resulting 

solution is a permutation schedule where there is no in-
serted idle time on any machine. Let 

1Hσ  be the sche-
dule generated by the H1 and 

1Hz  be the cost of sche-
dule 

1.Hσ  
The next heuristic uses a simple scheduling called 

the LPT to determine the scheduling order of all jobs. 
The LPT rule schedules a job with the longest proces-
sing time on the first available machine, and it is well 
known to generate a good approximate schedule in a 
parallel machine environment. 

 
Heuristic LP 
1. Determine the scheduling order of the jobs at stage 1 

according to the LPT rule on processing time of jobs 
at stage 1 without any inserted idle. 

2. Schedule jobs at stage 2 in the completion order jobs 
at stage 1. 

3. Calculate and output ,maxC  and stop. 
 
Heuristic LP runs in ( log )O n n  time. The resulting 

solution is a permutation schedule where there is no in-
serted idle time on any machine. Let 

LPσ  be the schedule 
generated by the LP and 

LPz  be the cost of schedule 

.LPσ  
Finally, we present Heuristic H2 which also uses 

the Johnson’s rule to determine the sequence of jobs in 
iN  for {1, 2}.i∈  Then, the H2 assumes that jobs on 1mM +  

and 2mM +  complete at the same time to determine job 
sequence at stage 1. Notice that the H2 generates the 
same optimal solution as the Algorithm A1, which is to 
solve problem 2(2 , ) || ,maxF d P C  if processing times at 
stage 2 are identical. Hence, we can consider the H2 as 
an extended version of the Algorithm A1 for problem 

2( , 2 ) || .maxF P d C  
 

Heuristic H2 
1. Let 1 2 1 3= max{ , }T P P P P+ +  which is an upper bound 

for .maxC  
2. Apply the Johnson’s rule for jobs in each of 1N  and 

2N  separately, and schedule jobs in iN  on m iM +  for 
= 1, 2i  without inserted idle time except for the first 

job on each machine such that the last job on each 
machine completes at time T. 

3. Schedule jobs at stage 1 backward, i.e., starting from 

the last job scheduled on either 1mM +  or 2 ,mM +  such 
that waiting time of each job between the two stages 
can be minimized. 

4. Expedite all jobs such that the first jobs on iM  for 
i M∈  starts at time 0 and there exists no inserted idle 
time. 

5. Calculate and output ,maxC  and stop. 
 
Heuristic H2 runs in ( log )O n n  time. The resulting 

solution is a permutation schedule where there is no 
inserted idle time on any machine. Let 

2Hσ  be the sche-
dule generated by the H2 and 

2Hz  be the cost of sche-
dule 

2.Hσ  

7.  ANALYSIS OF HEURISTICS 

In this section, we analyze the heuristics for the 
general case of the problem. We first analyze heuristic 
H1, and for convenience, we define some notation. For a 
schedule ,σ  let ( )jI σ  be the idle time on m iM +  before 
job j and after the previous job in ,iN  if any, for any 

.ij N∈  Also, we notify that the following analysis on 
the H1 is based on one of the analysis procedures in 
Chen (1995). The following lemma establishes that the 
idle time of a job is no larger than the job's processing 
time at stage 1. 

 
Lemma 7. For any .j N∈  

1
1( ) .H

j jI pσ ≤   
 
Proof. Observe that schedule σ  which is generated by 
Step 1 of the H1 always generates a smaller idle time for 
each job than 

1Hσ  does. Hence, we can prove this lemma 
by using .σ  Note that the Johnson’s rule generates a 
permutation schedule and there is no inserted idle time 
on m iM +  for {1, 2}.i∈  Hence, 1( ) .j jI pσ ≤  □ 
 

The following result establishes the asymptotically 
tight for the H1. 

 
Theorem 5. 

1 */ 3 2/ ,Hz z m≤ −  and the bound is asympto-
tically tight. 
 
Proof. Without loss of generality, we suppose that maxC  

1 2( ) ( ).m max mCσ σ+ +≥  If 
1( ) = 0H

jI σ  for all 1,j N∈  then 
1Hσ  

does not have any idle time on 1.mM +  Hence, it can be 
seen that 

1 *( ) 2 ,H
max maxC Cσ ≤  and the result holds. Thus, we 

suppose 
1( ) > 0H

jI σ  for some 1.j N∈  
 
We let 1 1= {1, 2, , }N n  and reindex jobs in 1N  such 

that jobs in 
1
1

H
mσ +  is scheduled in their index order. Then, 

2 1 1= { 1, 2, , }.N n n n+ +  Further, we let 1= max{ :k j N∈  
1( ) > 0},H

jI σ  and 1 1 1 1,= { : < }j m jQ j N p p +∈  and 2 = \Q N  
1.Q  Then, we consider the following two cases. 

 
Case 1. 1.k Q∈  

Since jobs are first scheduled by the Johnson’s rule, 
1{1, 2, , } .k Q⊆  Then, we have 

1
1 1,( ) <H

j j m jI p pσ +≤  from 
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Lemma 7. Thus,  
 

1 1
,

1

( ) = ( ( ) )H H
max j m i j

j N
C I pσ σ +

∈

+∑   

1
,

1( )>0 1

= ( )H
j m i j

H j NI j

I p
σ

σ +
∈

+∑ ∑  

1 , 1,
=1 1 1

2
k

i m i j m j
j j N j N

p p p+ +
∈ ∈

≤ + ≤∑ ∑ ∑  

* *2 (3 2/ ) .max maxC m C≤ ≤ −  
 

Case 2. 2.k Q∈  
Since jobs are first scheduled by the Johnson’s rule, 

1 2{ 1, 2, , } .k k n Q+ + ⊆  Let T be the starting time of job 
k at stage 1. Let R be a set of jobs in N which start 
earlier than job k at stage 1. Then, 1 .jj R

p mT
∈

≥∑  Since 
job 2k Q∈  and from Lemma 5, we have 

 
1

1 1 1,
= 1* .

n

j k m j
j N j k

max

p p p
C T

m m

+
∈ +

+
≥ ≥ +
∑ ∑

 

 
Observe that 

1 1
1 1, 1,= 1

( ) = .nH
max k m k m jj k

C T p p pσ + ++
+ + +∑  

Hence, 
 

1 *( )H
max maxC Cσ −  

1

1 1,1
= 1

1 1, 1,
= 1

n

n k m j
j k

k m k m j
j k

p p
p p p

m

+
+

+ +
+

+
≤ + + −

∑
∑  

1

1 1,
= 1

1,

( 1)( )
=

n

k m j
j k

m k

m p p
p

m

+
+

+

− +
+

∑
 

1, 1,
=1

1,

( 1)( )
=

k

m k m j
j

m k

m p p
p

m

+ +

+

− +
−

∑

1 1, 1,( 1)( )k m k m j
j N

m p p p

m

+ +
∈

− + +
+

∑
 

1 1, 1, *( 1)( )
2( 1) .

k m k m j
j N max

m p p p
m C

m m

+ +
∈

− + +
−

≤ ≤
∑

 

 
In order to prove that the bound is asymptotically 

tight, consider the instance where there are n jobs, 1| |N  
= ,n  and 2| | = 0.N  For the case where = 2,m  we can con-
struct the instance where 1,1 1,2 1,3 1,= , = = = = 1,np n p p p   
and 3,1 3,2 3,= = = = 1.np p p  The smallest processing time 
of any job is 1 and processing time for all jobs on 3M  is 
1. Hence, any job sequence can be a schedule by the H1. 
Then, 

1 = (1, 2, , ),H nσ  and the solution value is 
1Hz =  

2n.  An optimal schedule is 
* = (2, 3, , , 1)nσ  where job 

1 is scheduled on 1M  and the rest of jobs are scheduled 
on 2 ,M  and the solution value is 

* = 1.z n +  The relative 
error, 

1 */ = 2 /( 1)Hz z n n +  goes to 3 2/ = 2m−  as .n →∞  

Therefore, the bound is asymptotically tight for the case 
where = 2.m  

For the case where > 2,m  the construction of an 
instance is complicated and we use the instance sug-
gested by Chen (1995). Note that the instance in Chen 
(1995) is for problem 2( , 1) || .maxF P C  As an example, we 
present the instance where = 3.m  Consider the instance 
where there are = 3 5n k +  jobs for 2,k ≥  1| | = ,N n  and 

2| | = 0.N  Also, 1,1 1,2 1,3 1,4 1,5 1,6= 0, = = = , =3 ,p p p p k p k p  
1,7 1,= = = = 1,np p  and 4,1 4,2 4,= = = = 1.np p p  As in the 

previous example where = 2,m  any job sequence can be 
a schedule by the H1. Then, 

1 = (1, 2, , ),H nσ  and the 
solution value is 

1 = 3 ( 1) = 4 ( 4) =Hz k k n m k n+ + − − + −  
7 1.k +  An optimal schedule is 

* = (1, 5, 6, 7, 8, , 3kσ +  
4, 3 5, 2, 3, 4)k +  where job 3 and 5 are scheduled on 

1,M  jobs 2 and 3 are scheduled on 2 ,M  job 4 is sche-
duled on 3M  and the rest of jobs are scheduled on 2M  
and 3M  so that jobs on 1,M  2 ,M  and 3M  are finished at 
4k, and the solution value is 

* = = 3 5.z n k +  The relative 
error, 

1 */ = (7 1)/(3 5)Hz z k k+ +  goes to 3 2/ = 7/3m−  as n  
.→∞  Therefore, the bound is asymptotically tight for 

the case where = 3.m  □ 
 
Next, we analyze the LP, and the following theo-

rem establishes that heuristic LP has the worst case 
bound of 7/3 1/(3 ).m−  

 
Theorem 6. 

*/ 7/3 1/(3 ).LPz z m≤ −  
 
Proof. Note that for problem || ,maxP C  ( )/max maxC LPT C  
( ) = 4/3 1/(3 )OPT m− (Graham, 1969) where ( )maxC LPT  
and ( )maxC OPT  are solution values of the LPT schedule 
and an optimal schedule, respectively. 
 

Without loss of generality, suppose that the last job 
at stage 1 completes on 1.M  Then, we have 

 
*

1
4 1( ) ( ) .
3 3

LP
max maxC C

m
σ ≤ −  

 
After completion of the last job at stage 1, there should 
not be any idle time at stage 2. Hence, 

 
1 1 2( ) ( ) max{ , }.LP LP

max max m mC C P Pσ σ + +≤ +  
 

Then, from Lemma 4, 
 

1
1( ) ( )LP LP

max maxC C zσ σ≤ +  
* *4 1( )

3 max maxC C
m

≤ − +  

*7 1( ) .
3 maxC

m
≤ −  □ 

 
Remark 2. There exists an instance of problem 2( ,F P  
2 ) || jd C∑  whose bound on 

*/ = 2 1/(3 ).LPz z m−  
 
Proof. We first consider the case where m is an even 
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number. Consider the instance where there are = 2 1n m +  
jobs with processing times 1,2 1 1,2= = 2j jp p m j− −  for =j  

1, 2 1 1, 2 11, 2, , /2, = =m j m jm p p m j+ − + − +  for = 1, 2, , /j m  
1,2 1 1,2 1,2 1 1,2 1, = = = , = 0m m m m jp p p m p− + +−  for = 1, 2, ,j  

1,2 12 , = 2 .m mm p m+ +  In an optimal schedule, jobs 2 1,m −  
2 , 2 1m m +  are scheduled on the same machine at stage 1 
so that the sum of their processing time is 3 .m  Similarly, 
one job with processing time 2m j−  and another job 
with processing time m j+  are processed on the same 
machine at stage 1 for = 1, 2, , /2 1.j m −  Also, two jobs 
with processing time 2 /2m m−  are processed on the 
same machine at stage 1. Note that on each machine, 
two jobs are scheduled and the total processing time on 
each machine is 3 .m  Finally, we assume that job 2 1m +  
is the first job to be scheduled. Then, the optimal solu-
tion value is 

* = 3 .z m  In a schedule by the LP, one job 
with processing time 2m j−  and another job with pro-
cessing time 1m j+ −  is processed on the same machine 
at stage 1 so that the sum of their processing time is 
3 1.m −  On each machine, schedule a bigger job first so 
that it complies to the LPT rule. Furthermore, we assume 
without loss of generality that one remaining job which 
is scheduled last in the schedule is job 2 1.m +  Then, the 
solution value is = 3 1 3 = 6 1.LPz m m m− + −  The relative 
error is (6 1)/(3 ) = 2 1/(3 ).m m m− −  An instance where m is 
an odd number can be similarly constructed. □ 

 
Remark 3. The worst case error bound for the H1, 
3 2/m−  is less than that for the LP, 7/3 1/(3 )m−  only if 

< 2.5.m  Hence, for the case where 3,m ≥  the LP per-
forms better than the H1 in terms of the worst case 
bound. 

 
The following theorem establishes that heuristic H2 

has the worst case bound of 3 1/ .m−  Recall that the LS 
rule schedules the first available job on the first ava-
ilable machine. 

 
Theorem 7. 

2 */ 3 1/Hz z m≤ − . 
 
Proof. Note that for problem || , ( )/ ( )max max maxP C C LS C OPT   
= 2 1/m− (Graham, 1969) where ( )maxC LS  and ( )maxC OPT  
are solution values of the LS schedule and an optimal 
schedule, respectively. 

 
Without loss of generality, suppose that the last job 

at stage 1 completes on 1.M  Then, we have 
 

*
1

1( ) (2 ) .LS
max maxC C

m
σ ≤ −  

 
After completion of the last job at stage 1, there should 
not be any idle time at stage 2. Hence, 
 

1 1 2( ) ( ) max{ , }.LS LS
max max m mC C P Pσ σ + +≤ +  

 
Then, from Lemma 4, 

1
1( ) ( )LS LS L

max maxC C zσ σ≤ +  
* *1(2 ) max maxC C

m
≤ − +  

*1(3 ) .maxC
m

≤ −  □ 

8.  COMPUTATIONAL STUDY 

To study the practical value of the procedures we 
develop, heuristics H1, LP, and H2 are empirically eva-
luated. Because finding 

*z  is computationally intensive, 
we use lower bound value 

1 2 3max{ , , }L L Lz z z  for the ex-
periments from Lemmas 4, 5, and 6. For notational con-
venience, let 

1 2 3= max{ , , }.L L L Lz z z z  The performance 
indicators for H1, LP, and H2 are the upper bounds on 
the relative errors, 

1( )/ , ( )/ ,H L L LP L Lz z z z z z− −  and 
2( Hz  

)/ ,L Lz z−  respectively. 
This computational study compares the performance 

of LP, H1, and H2 under various conditions and exa-
mines the effects of various factors such as m, n, 1 2, ,n n  
and .ijp  For each problem instance, : [ , ]LB UB

ijp DU p p  for 
i M∈  and j N∈  where 

LBp  and 
UBp  are parameters and 

where [ , ]DU u  is a discrete random variable uniformly 
distributed between  and u. For a given set of test pro-
blems, n, 1 2, ,n n  and m are fixed. 

We generate 1,080 test problems under 36 condi-
tions. To test the effects of varying the number of jobs n, 
three different values of n are considered: 10, 50, and 
100. To determine the effect of the gap between 1n  and 

2,n  we consider three different combinations of in ’s for 
each value of n. They are 1 1= 0.5 , = 0.6 ,n n n n  and 1 = 0.7 .n n  
For these cases, we fixed m as 2. Finally, in order to test 
the effects of different number of machines, three values 
of m are considered: 2, 5, 10. For these cases, we fixed n 
as 50. 

It is also possible that the standard deviation of the 
sijp '  may affect heuristic performance. Consequently, 

we consider three different distributions for , {1,ijp i∈  
2} : : [1, 99], : [25, 75],ij ijp DU p DU  and : [40, 60].ijp DU  

The standard deviations are 28.88, 14.43, and 5.77, res-
pectively. 

The mean relative error is the arithmetic mean of 
the ratio of ( )H Lz z−  to 

Lz  where 
Hz  is the value of the 

heuristic. The mean relative error is calculated over 30 
instances of each problem type. The program is imple-
mented in C and run on a desktop PC with double 
processors with 2GHz for each plus 6GB RAM. 

In Table 1, we present the mean relative error when 
n = 10 while m is fixed as 2. The result indicates that the 
H2 performs best and the LP performs worst. This is 
interesting because in terms of the worst case bound, the 
LP is the best heuristic and the H2 is the worst one ac-
cording to our analysis of the heuristics in the previous 
section. As the standard deviation of ijp  increases, the 
average relative error bound increases for all heuristics. 
With a given standard deviation of ,ijp  as 1 2n n−  dec-
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reases, the mean relative error bound seems to increase 
for most of the cases. Notice that some portion of the 
error is due to using a lower bound for 

*.z  Hence, the 
performance of the heuristics is likely to be better than 
those indicated in the tables. Similar patterns can be 
found in Tables 2 and 3 where n = 50 and n = 100, 
respectively. 

In comparison of the cells from Tables 1, 2 and 3, it 

seems that the performance of the heuristics drastically 
improves as n increases. This improvement is consistent 
for the three heuristics. 

The last three columns in Tables 1, 2 and 3 indicate 
that the H2 is overall the best choice among the heu-
ristics compared when n = 10 and n = 50. In only six 
cases out of 27 cases, the H1 performs slightly better 
than the H2. However, it seems noticeable the perfor-

Table 1. Heuristic Performance when = 10n  and = 2m (*out of 30 problems) 

10=n  Mean relative error  # of best performance* 
:ijp  1 2( , )n n  LP H1 H2 LP H1 H2 

 (5, 5) 0.30126 0.06496 0.04009 0 14 25 
[1, 99]DU  (6, 4) 0.24952 0.05926 0.03839 1 17 22 
 (7, 3) 0.24356 0.02790 0.02149 1 21 20 
 (5, 5) 0.26233 0.00415 0.00056 0 21 29 

[25, 75]DU  (6, 4) 0.20087 0.00130 0.00067 0 25 29 
 (7, 3) 0.12518 0.00040 0.00019 0 28 28 
 (5, 5) 0.24900 0.00207 0.00024 0 21 30 

[40, 60]DU  (6, 4) 0.16488 0.00001 0.00004 0 29 29 
 (7, 3) 0.08694 0.00001 0.00003 0 29 29 

 
Table 2. Heuristic Performance when = 50n  and = 2m (*out of 30 problems) 

= 50n  Mean relative error # of best performance* 
:ijp  1 2( , )n n  LP H1 H2 LP H1 H2 

(25, 25) 0.17312 0.04646 0.03092 0 12 24 
(30, 20) 0.13675 0.04074 0.01943 0 16 25 [1, 99]DU  
(35, 15) 0.11115 0.01103 0.00393 0 21 26 
(25, 25) 0.16793 0.00459 0.00184 0 22 27 
(30, 20) 0.08986 0.00070 0.00076 0 29 29 [25, 75]DU  
(35, 15) 0.04206 0.00000 0.00064 0 30 29 
(25, 25) 0.15187 0.00380 0.00106 0 19 30 
(30, 20) 0.06343 0.00001 0.00002 0 29 29 [40, 60]DU  
(35, 15) 0.02626 0.00001 0.00002 0 29 29 

 
Table 3. Heuristic Performance when = 100n  and = 2m (*out of 30 problems) 

= 100n  Mean relative error # of best performance* 
:ijp  1 2( , )n n  LP H1 H2 LP H1 H2 

(50, 50) 0.11954 0.02049 0.01757 0 17 21 
(60, 40) 0.05429 0.01381 0.00113 0 15 27 [1, 99]DU  
(70, 30) 0.04507 0.00263 0.00090 0 23 27 
(50, 50) 0.11428 0.00409 0.00220 0 20 23 
(60, 40) 0.03279 0.00058 0.00037 0 29 28 [25, 75]DU  
(70, 30) 0.01408 0.00061 0.00032 0 29 28 
(50, 50) 0.09921 0.00384 0.00120 0 16 29 
(60, 40) 0.02444 0.00000 0.00001 0 30 29 [40, 60]DU  
(70, 30) 0.00824 0.00000 0.00001 0 30 29 
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Table 4. Heuristic Performance with Varying # of Machines (*out of 30 problems) 

= 50,n  : [1, 99]ijp DU  Mean relative error # of best performance* 
m 1 2( , )n n  LP H1 H2 LP H1 H2 

(25, 25) 0.17312 0.04646 0.03092 0 12 24 
(30, 20) 0.13675 0.04074 0.01943 0 16 25  

2 
(35, 15) 0.11115 0.01103 0.00393 0 21 26 
(25, 25) 0.07170 0.00012 0.00003 0 29 30 
(30, 20) 0.06400 0.00002 0.00048 0 29 28  

5 
(35, 15) 0.05488 0.00002 0.00018 0 29 28 
(25, 25) 0.06883 0.00012 0.00003 0 29 30 
(30, 20) 0.06390 0.00002 0.00048 0 29 28  

10 
(35, 15) 0.05488 0.00002 0.00018 0 29 28 

 
 
Table 5. Complexity of Two-stage Hybrid Flow Shop with Identical Parallel Machines at Stage 1 and Two 

Dedicated Machines at Stage 2 

# of Mach. Job Characteristics Complexity Results 
  Unary NP-comp. Yang (2010) 
 1 2( ) =N or N ∅  Unary NP-comp. Thm. 1 

m  1, 2,= = 0,m j m jp p+ + j N∀ ∈  Binary NP-comp. Thm. 2 
m  1, 2,= = ,m j m jp p p+ + j N∀ ∈ , 1{ }min j N jp p∈≤  Binary NP-comp. Thm. 3 

 1 1=jp p  for all j N∈  )log( nnO  Cor. 1 

mance of the H1 seems as good as that of the H2 or it is 
slightly better than the H2 when n = 100. The heuristic 
LP is the by far the worst heuristic among the heuristics 
compared even though it has the best worst case bound 
when 3.m ≥  Based on the comparison of the three heu-
ristics, it seems that the using Johnson’s rule is critical 
when a simple heuristic is developed for the problem. 

In Table 4, we present the mean relative error with 
varying number of machines while n is fixed as 50 and 

: [1, 99].ijp DU  The results indicate that the performance 
of the three heuristics improves as the number of ma-
chines increases. However, the improvement in perfor-
mance of the LP is small compared to the other two heu-
ristics. Finally, it seems that the performances of the H1 
and the H2 are almost identical when m = 5 and m = 10. 

Since the computation time of each of the heuri-
stics is negligible, for each instance managers in real 
worlds may choose the best heuristic by comparing the 
results of all three heuristics. 

9.  SUMMARY AND FURTHER RESEARCH 

In this paper, we consider the hybrid flow shop 
scheduling problem where there exist identical parallel 
machines at stage 1 and two dedicated machines at stage 
2. We establish complexity for some of the special cases 
of the problem, and for other special cases, we develop 

optimal solution procedures which run in polynomial 
time. The three heuristics based on the simple rules such 
as the Johnson’s rule and the LPT rule are examined. 
For each of the heuristics, we provide some theoretical 
analysis and find a worst case bound on relative error. 
Especially, we extend heuristic H, which is for the case 
with identical parallel machines at stage 1 and one ma-
chine at stage 2 by Chen (1995), for the case where 
there exist identical parallel machines at stage 1 and two 
dedicated machines at stage 2, and we find an asymp-
totically tight bound on relative error. Then, we develop 
the two additional heuristics which are based on simple 
scheduling rules, the LPT rule and the Johnson’s rule, 
respectively. Finally, the heuristics are empirically eva-
luated. 

We summarize our work in Table 5. A blank in the 
number of machines column implies arbitrary number 
machines. Also, a blank in the Job Characteristics column 
implies that there are no job restrictions. We also list the 
theorem or reference where each complexity is found. 

The problem has several important practical impli-
cations for the real-world situations. But, so far little 
research has been done for the problem. The worth con-
sidering are more general cases of the problem such as 
including different objective functions. Also, heuristics 
must be improved and their performance should be 
studied. 
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