• 제목/요약/키워드: Parabolic Equations

검색결과 256건 처리시간 0.021초

직교좌표계에 의한 아치의 자유진동 해석 (Free Vibrations of Arches in Rectangular Coordinates)

  • Lee, Tae-Eun;Ahn, Bae-Soon;Kim, Young-Il;Lee, Byoung-Koo
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.394.2-394
    • /
    • 2002
  • The differential equations governing free vibrations of the elastic arches with unsymmetric axis are derived in the rectangular coordinates rather than in polar coordinates, in which the effect of rotatory inertia is included. Frequencies and mode shapes are computed numerically for parabolic arches with both clamped ends and both hinged ends. Comparisons of natural frequencies between this study and SAP 2000 are made to validate theories and numerical methods developed herein. (omitted)

  • PDF

전단변형을 고려한 수평곡선보의 자유진동 (Free Vibrations of Horizontally Curved Beams with Shear Deformation)

  • Shin, Seong-Cheol;Park, Kou-Moon;Lee, Jong-Kook;Lee, Byoung-Koo
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.395.1-395
    • /
    • 2002
  • The ordinary differential equations governing free vibrations of elastic horizontally curved beams are derived, in which the effect of shear deformation as well as the effects of vertical deflection, rotatory and torsional inertias are included. Frequencies and mode shapes are computed numerically fer parabolic curved beams with hinged-hinged, hinged-clamped and clamped-clamped ends. Comparisons of natural frequencies between this study and ADINA are made to validate the theories and numerical methods developed herein. (omitted)

  • PDF

Vibration analysis of plates with curvilinear quadrilateral domains by discrete singular convolution method

  • Civalek, Omer;Ozturk, Baki
    • Structural Engineering and Mechanics
    • /
    • 제36권3호
    • /
    • pp.279-299
    • /
    • 2010
  • A methodology on application of the discrete singular convolution (DSC) technique to the free vibration analysis of thin plates with curvilinear quadrilateral platforms is developed. In the proposed approach, irregular physical domain is transformed into a rectangular domain by using geometric coordinate transformation. The DSC procedures are then applied to discretization of the transformed set of governing equations and boundary conditions. For demonstration of the accuracy and convergence of the method, some numerical examples are provided on plates with different geometry such as elliptic, trapezoidal having straight and parabolic sides, sectorial, annular sectorial, and plates with four curved edges. The results obtained by the DSC method are compared with those obtained by other numerical and analytical methods. The method is suitable for the problem considered due to its generality, simplicity, and potential for further development.

Nonlinear cylindrical bending analysis of E-FGM plates with variable thickness

  • Kaci, Abdelhakim;Belakhdar, Khalil;Tounsi, Abdelouahed;Bedia, El Abbes Adda
    • Steel and Composite Structures
    • /
    • 제16권4호
    • /
    • pp.339-356
    • /
    • 2014
  • This paper presents a study of the nonlinear cylindrical bending of an exponential functionally graded plate (simply called E-FG) with variable thickness. The plate is subjected to uniform pressure loading and his geometric nonlinearity is introduced in the strain-displacement equations based on Von-Karman assumptions. The material properties of functionally graded plates, except the Poisson's ratio, are assumed to vary continuously through the thickness of the plate in accordance with the exponential law distribution; and the solution is obtained using Hamilton's principle for constant plate thickness. In order to analyze functionally graded plate with variable thickness, a numerical solution using finite difference method is used, where parabolic variation of the plate thickness is studied. The results for E-FG plates are given in dimensionless graphical forms; and the effects of material and geometric properties on displacements and normal stresses through the thickness are determined.

An analytical solution for bending and vibration responses of functionally graded beams with porosities

  • Zouatnia, Nafissa;Hadji, Lazreg;Kassoul, Amar
    • Wind and Structures
    • /
    • 제25권4호
    • /
    • pp.329-342
    • /
    • 2017
  • This work presents a static and free vibration analysis of functionally graded metal-ceramic (FG) beams with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. A new displacement field containing integrals is proposed which involves only three variables. Based on the suggested theory, the equations of motion are derived from Hamilton's principle. This theory involves only three unknown functions and accounts for parabolic distribution of transverse shear stress. In addition, the transverse shear stresses are vanished at the top and bottom surfaces of the beam. The Navier solution technique is adopted to derive analytical solutions for simply supported beams. The accuracy and effectiveness of proposed model are verified by comparison with previous research. A detailed numerical study is carried out to examine the influence of the deflections, stresses and natural frequencies on the bending and free vibration responses of functionally graded beams.

Pasternak 지반위에 놓인 변화곡률 수평 곡선보의 자유진동 (Free Vibrations of Horizontally Noncircular Curved Beams resting on Pasternak Foundations)

  • 이병구;박광규;오상진;진태기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.706-711
    • /
    • 2000
  • This paper deals with the free vibrations of horizontally curved beams on an elastic foundation. Taking into account the effects of rotatory inertia and shear deformation, the differential equations governing free vibrations of noncircular curved beams resting on Pasternak-type foundations are derived and solved numerically. The lowest three natural frequencies for parabolic curved beams with hinged-hinged and clamped-clamped end restraints are calculated. Numerical results are presented to show the effects on the natural frequencies of the non-dimensional system parameters: the horizontal rise to span length ratio, the Winkler foundation parameter, the shear foundation parameter, and the width ratio of contact area between the beam and foundation.

  • PDF

일정체적 변단면 원호형 아치의 자유진동 (Free Vibrations of Tapered Circular Arches with Constant Volume)

  • 이병구;이태은;윤희민;최종민
    • 한국소음진동공학회논문집
    • /
    • 제20권2호
    • /
    • pp.144-152
    • /
    • 2010
  • This paper deals with free vibrations of the tapered circular arches with constant volume, whose cross sectional shape is the solid regular polygon. Volumes of the objective arches are always held constant regardless shape functions of the cross-sectional depth. The shape functions are chosen as the linear, parabolic and sinusoidal ones. Ordinary differential equations governing free vibrations of such arches are derived and solved numerically for determining the natural frequencies. In the numerical examples, hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. As the numerical results, the relationships between non-dimensional frequency parameters and various arch parameters such as rise ratio, section ratio, side number, volume ratio and taper type are reported in tables and figures.

일정체적 원호형 곡선보의 자유진동 (Free Vibrations of Circular Curved Beams with Constant Volume)

  • 이병구;이태은;최종민;박창은
    • 한국소음진동공학회논문집
    • /
    • 제21권6호
    • /
    • pp.570-579
    • /
    • 2011
  • This paper deals with free vibrations of the circular curved beams with constant volume, whose cross sectional shapes are the circular solid cross-sections. Volumes of the objective beam are always held in constant regardless shape functions of the cross-sectional radius. The shape functions are chosen as the linear, parabolic and sinusoidal ones. Ordinary differential equations governing free vibrations of such beam are derived and solved numerically for determining the natural frequencies. In numerical examples, the hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. As the numerical results, relationships between frequency parameters and various beam parameters such as rise ratio, section ratio, elasticity ratio, volume ratio, slenderness ratio and taper type are reported in tables and figures.

RADII PROBLEMS FOR THE GENERALIZED MITTAG-LEFFLER FUNCTIONS

  • Prajapati, Anuja
    • 대한수학회지
    • /
    • 제57권4호
    • /
    • pp.1031-1052
    • /
    • 2020
  • In this paper our aim is to find various radii problems of the generalized Mittag-Leffler function for three different kinds of normalization by using their Hadamard factorization in such a way that the resulting functions are analytic. The basic tool of this study is the Mittag-Leffler function in series. Also we have shown that the obtained radii are the smallest positive roots of some functional equations.

회전관성과 전단변형을 고려한 수평 곡선보의 자유진동 (Free Vibrations of Horizontally Curved Beams with Rotatory Inertia and Shear Deformation)

  • 이병구;모정만;이태은;안대순
    • 한국소음진동공학회논문집
    • /
    • 제13권1호
    • /
    • pp.63-69
    • /
    • 2003
  • The ordinary differential equations governing free vibrations of elastic horizontally curved beams are derived, in which the effects of rotatory inertia and shear deformation as well as the effects of both vertical and torsional inertias are included. Frequencies and mode shapes are computed numerically for parabolic curved beams with the hinged-hinged, hinged-clamped and clamped-clamped ends. Comparisons of natural frequencies between this study and ADINA are made to validate the theories and numerical methods developed herein. The lowest three natural frequency parameters are reported. with and without the effects of rotatory inertia and shear deformation. as functions of the three non-dimensional system parameters: the horizontal rise to span length ratio. the slenderness ratio and the stiffness parameter.