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RADII PROBLEMS FOR THE GENERALIZED
MITTAG-LEFFLER FUNCTIONS

ANUJA PRAJAPATI

ABSTRACT. In this paper our aim is to find various radii problems of
the generalized Mittag-Leffler function for three different kinds of nor-
malization by using their Hadamard factorization in such a way that the
resulting functions are analytic. The basic tool of this study is the Mittag-
Leffler function in series. Also we have shown that the obtained radii are
the smallest positive roots of some functional equations.

1. Introduction

Geometric function theory and special functions are close related to each
other, since hypergeometric functions have been used in the proof of the fa-
mous Bieberbach conjecture. Due to this conjecture various authors have con-
sidered some geometric properties of special functions such as Bessel, Lommel,
Struve, g-Bessel functions, which can be expressed by the hypergeometric se-
ries. The first important results on the geometric properties of Mittag-Leffler
function and other special functions can be found in [4,16,26,28,40]. Actually
there are relationship between the geometric properties and the zeros of the
special functions. Numerous authors has been done their works on the zeros
of the special functions mentioned earlier. It is well known that the concepts
of convexity, starlikeness, close-to-convexity and uniform convexity including
necessary and sufficient conditions have a long history as a part of geomet-
ric function theory. Recently, radius problems with some geometric properties
like univalence, starlikeness, convexity, uniform convexity, parabolic starlike-
ness, close-to-convexity, strongly starlikeness of Wright, Bessel, Struve, Lom-
mel functions of the first kind have been investigated in [1-3,5-12,14,18,21,39].
Recently, the radii of convexity and starlikness of the generalized Mittag-Leffler
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1032 A. PRAJAPATI

functions were studied by Baricz and Prajapati [9]. Motivated by the above
results and using the technique of Baricz et al. [11] in this paper, our aim is to
find some new results for the various radii problems of n-uniformly convexity,
n-parabolic starlikeness, a-convexity and strong starlikeness of order p for the
three different kinds of normalization of the generalized Mittag-Leffler function.

1.1. Characterization of uniform convex and parabolic starlike func-
tions

In order to present our results we need the following definitions. Let D(r)
be the open disk {z € C : |2| < r}, where r > 0, and set D = D(1). Let (a,),
n > 2 be a sequence of complex numbers with

1 1
d =limsup|a,|™ >0, and ry=—,

n—oo d
where ry means the radius of convergence of the series f(z). If d = 0, then
ry = +00. Moreover, let A be the class of analytic functions f : D(ry) — C, of
the form

(1) f(z) = z—i—Zanz”.

Let S be the class of functions which belongs to A that are univalent in D(r).
The class of convex functions, denoted by C, is the subclass of S which consists
of functions f for which the image domain f(D(r)) is a convex domain. The
real numbers
2f"(2)
re(f :sup{r>0:§R{1—|—
) 7(2)

C _ . ?}‘E Zf//(z> f
5 (f) —sup{r >0: {1+ ) } > p for all zEID)(r)}
are called the radius of convexity and the radius of convexity of order p of
the function f, respectively. We note that 7°(f) = r§(f) is the largest radius
such that the image region f(D(r¢(f))) is a convex domain. For more details
about convex functions refer to Duren book [19] and to the references therein. A
function is said to be uniformly convex in D if f(z) is in class of convex functions
and has the property that for every circular arc € contained in I, with center
k also in D, the arc f(e) is a convex arc. In 1993, Ronning [38] determined
necessary and sufficient conditions of analytic functions to be uniformly convex
in the open unit disk, while in 2002, Ravichandran [37] also presented simpler
criterion for uniform convexity.

} >0 for all z € ID)(T)}

and

Definition. Let f(z) be the form (1). Then f is a uniformly convex functions

if and only if
Zf”(2)>
R (1 + 70 >

2f"(z)
f'(z)

, ze€D.
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The concept of the radius of uniform convexity is defined in [18].

7)) e e emn

A function is said to be in the class of n-uniformly convex function of order
p, denoted by n — UCV (p) in [13] if

SO )
@ 3?{”f'<z>}> 8

These classes generalize various other classes. The class n—UCV (0) = n—-UCV
is the class of np-uniformly convex functions [23] also see ([24,25]) and 1 —
UCV(0) = UCV is the class of uniformly convex functions defined by Goodman

[22] and Ronning [38], respectively. The radius of n-uniform convexity of order
p is defined in [39].

n—ucv(p)
Ty

a0

Definition. Let f(z) be in the form (1). Then we say that f is a parabolic
starlike function if and only if
2f'(2)

R(L).
f(2) f(2)
In 1993, Ronning [38] introduced the class of parabolic starlike and it is denoted
by SP. The class SP is a subclass of the class of starlike functions of order 1/2
and the class of strongly starlike functions of order 1/2.
A function is said to be the class of n-parabolic starlike function of order p,
denoted by n — SP(p) in [23] if

N L [2)
®) 3?<f(z>>>” 0

These classes generalizes to other classes. The class n — SP(0) =n— SP is the
class of n-parabolic starlike functions [23] and 1 — SP(0) = SP is the class of

parabolic starlike function. The radius of n-parabolic starlikeness of order p is
defined in [14].

n—SP(p)
Ty

i (£) = sup {r €(0,rs): R (1 +

‘—i—p, n>0p€[0,1),z €D,

+pin20.p€0.1).2€D() .

—-1], (ze€D).

—1‘+p7 n>0,p€[0,1),z€D.

s frer (L)oo 50 pelonsenin).

1.2. Geometric interpretation

fe€n—UCV(p) and f € n — SP(p) if and only if 1 + ZJ{,IEZ) and Z}CES)

respectively take all the values in the conic domain R, , which is included in
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the right half plane such that

(4) Rpp={w=u+iv:u>ny(u—1)2+0%+p}.

Denote P(P,,) (n > 0,0 < p < 1), the family of functions p, such that p € P
and p < P, , in D, where P denotes the class of Caratheodory functions and
the functions P, , maps the unit disk conformally onto the domain R, , such
that 1 € R, and OR,,, is a curve defined by the equality

Ry, ={u+iv: u? = (nv(u—1)2+0v2+ p)z}.

From the elementary computations we see that OR,,, represents the conic
sections symmetric about real axis.

Ry,p curve reduces to the imaginary axis for n = 0.
Ry,p is an elliptic region for n > 1.

Ry,p is a parabolic domain for n = 1.

Ry,p is a hyperbolic domain for 0 < n < 1.

Definition. Let f(z) be the form (1). For & € R and p € [0,1). Then we say
that f is a-convex of order p in ID(r) if and only if

R ((1 —a) ZJ{E;) +a (1 + Z;Ei?)) >p, zeD.

The radius of a-convexity of order p of the function f is defined by the real
number,

Ta,p(f)
= sup {re(o,rf):sfe(u—a)

ZJ{(S) +a <1+ ZJ{(S)» > p;pel0,1), ZEID)(T)} .

The concept of a-convexity is defined in [30]. Radius of a-convexity of order p
is the generalization of the radius of starlikeness of order p and of the radius
of convexity of order p. We have ro ,(f) = 7,(f) and 71 ,(f) = r5(f). For
the detailed treatment on starlike, convex and a-convex functions we refer to
[7,17,19,30,31] and to the references therein.

The above definitions are used to determine the radii of n-uniformly convex-
ity, a-convexity and n-parabolic starlikeness of order p for the functions of the
form (1). Also we will need the following lemma in the sequel.

Lemma 1.1 ([18]). Ifa >b>r > |z|, and X € [0,1], then

z r r

A

< — .
b—r a—r

-

’bz a—z

(5)

The followings are very simple consequences of the inequality

z z r r
— < —
(6) SCE(b—z Aa—z)_b—r Aa—r
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and

(i) <l

1.3. The three parameter generalization of Mittag-Leffler function

r
< .
b—r

Consider the function ¢(w, z) defined by,

n

z
(8) ¢(w,z)—zm, w>0,zeD,
E>0

where I" denotes the Gamma function. In 1903, Mittag-Leffler [29] was intro-
duced this function and thereafter it is known as the Mittag-Leffler function.
Depending upon the two complex parameters w and £, in 1905 Wiman [41]
introduced the another version of Mittag-Leffler function which having similar
properties with the function ¢(w, z). It is defined by the following series,

Sk

(9) ¢(wa67z)22m, w,B>0,z€D.

k>0

In 1971, Prabhakar [35] introduced the three parameter function ¢(w, 8,7, 2)
in the form of

(10) o(w, B,7,2) ZMMH& w,B,7>0,2€D,

where (), denotes the Pochhammer symbol (or shifted factorial) given in
terms of the Gamma function by (d); = I'(d 4+ k)/T'(d). Some particular cases
of ¢(w, B,7,2) are given in [9]. Observe that the function z — ¢(w, 3,7, —2z?)
does not belong to A. Thus first we perform some natural normalization. We
define three functions originating from ¢(w, 3,7, 2):

fwﬁ,’Y(Z) = (Zﬁr(ﬁ)¢(wv Ba 7> _22))1/6 )
gw7577('z) = Zr(ﬁ)¢(w7677a _22)7
hw,,@,’y(z) = Zr(ﬂ)¢(w7ﬁ7’ya 72)'

Obviously these functions belong to the class A. Of course, there exist infinitely
many other normalization. The main motivation to consider the above ones
is the studied normalization in the literature of Bessel, Struve, Lommel and
Wright functions.

1.4. Preliminary result on the Mittag-Leffler function

First we define, three transformations mapping the set {(%, B) w>1,8> 0}
into itself:

A <1,6> 5 <1,6>, B: (1,ﬁ) 5 (l,ww),
w 2w w 2w
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<1,5—1), if g>1,
1 w
C: (w,ﬁ> — 1
(,5), if 0<p<I.
w
We put W, = A(W,,) U B(W,,), where

Wa:{(:},ﬁ) :1<w<2,ﬁe[w—1,1]u[w,2]},

and W; is denoted as the smallest set containing W}, and invariant with respect
to A, B and C, that is, if (a,b) € W;, then A(a,b), B(a,b), C(a,b) € W;. By
using a result of Peresyolkova [33], Kumar and Pathan [27] recently proved
that if (%, B) € W; and « > 0, then all zeros of the generalized Mittag-Leffler
function ¢(w, B,7, z) are real and negative. It is worth mentioning that the
reality of the zeros as well as their distribution in the case of v = 1, that is
of Wiman’s extension ¢(w, 3,z), has a rich literature. For more details see
the papers of Dzhrbashyan [20], Ostrovskii and Peresyolkova [32], Popov and
Sedletskii [34].

2. Main results

2.1. Radii of n-uniformly convexity of order p of functions f, 3.,
9w.By and hy g,y

Now, our aim is to investigate the radii of n-uniformly convexity of order
p of the normalized forms of the generalized three parameter Mittag-Leffler
function, that is of f, g~,9w.5,v and Ay g~. The technique of determining the
radii of p-uniformly convexity of order p in the next theorem follows the ideas
from [18].

Theorem 2.1. Let (X,8) € W;, v> 0 and p € [0,1).

(a) The radius of n-uniform convexity of order p of the function f, g~ is
the smallest positive root of the equation

ro’ . (1) 1 ro! . (1)
e () (1) B
V() \B Vi, p.(r)
where Uy, p.4(2) = 27X 5.4 (2).
(b) The radius of n-uniform convezity of order p of the function g, g~ is
the smallest positive root of the equation
rg’ r
1—p+(1 +n)7gw’5”( )
!/
gw,ﬁv'y(T)
(c) The radius of n-uniform convexity of order p of hy g is the smallest
positive Toot of the equation

=0.

rhgﬁﬁ(r)
!

= 0.
hw,ﬁ;y(r)

1—p+(1+n)
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Proof. (a) Let ¢, 8,4,n and ¢, .. De the nth positive roots of ¥, 5, and v By
respectively. In [9, Theorem 3(a)], the followmg equality was demonstrated,

1+W: ( )Z i —Z g 222_22.

w,B,y n>1 Sw.Bm n>1 Sw.B,7,m

In order to prove this theorem we need to investigate two different cases such
as 3 € (0,1] and 8 > 1. First suppose 3 € (0,1]. In this case, with the help of
(7) for g € (0,1], we have

(11) %(Lka%&ﬂ> _<-4>§:2 _ﬂa—E:ﬁfzﬁjﬁ

w 6,7(2) n>1 "w.Bv,m n>1 Sw.Bm

o TfoJ/,B,’Y( )
=1+ —
w,ﬂw(r)

where |z| <7 <<, 5 1 < u,8,4,1, holds true for [2| = r. Moreover, in view of
(7) and n > 0, we get,

(12) 7w2%&é§‘ ( )E: 2 2 —§:¢22g_£

w,B,y n>1 w,B8,7,n n>1 w,B8,7,n
22 2r2
oy ((G-) - )
= _ 2 72 _ 2
n>1 Sw.Bym T SoBrmn T
o _nrfu/.:,ﬂ,'y( )
fulwﬁﬁ(r) 7

where [z[ <7 </ 5.1 <<wpg,1. Inview of the inequality (6), we obtain that
(11) and (12) are also valid when 3 > 1 for all 2z € (0,¢/, 5. ;). Here we used
that the zeros of ¢, g,4,1 and ¢/, 5 . ; interlace, that is, we have ¢/, 5 - | <<y p4,1-
From (11) and (12), we have

(13) %<1+zw@¢@>_ #ip4(2) "up2(")

—p=1l=p+(1+mn)
w, BN(T)

)

fip(?) O

where |z| < r < ¢ 5 and p € [0,1), n > 0. Due to minimum principle for
harmonic functions, equality holds if and only if z = r. Now, the above deduced
inequality imply for r e (0,¢, By 1)-

| RO ARG
o {n (1 55) -

c/u,b’ﬁ(z)
The function ug g4 : (0,5, 5.,1) — R, defined by

r (L'/,IB,fy(T)
f;,ﬁ,v(r)

—p}=1—p+ﬂ+n)

r z,/u/,[j,'y(r)

Uy py(r)=1—p+(1 JFU)m
W, 0,7
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2r? 1 2r?
D e () Feosy
=1 \ g T B) Sopan =T

is strictly decreasing when 8 € (0,1] and n > 0, p € [0,1). Moreover, it is also
strictly decreasing when 8 > 1 since

1 87"(3,57” SK B8,7,m
UG 54(r) =—(1+n) (3 - 1) Z (2 — 22 Z (2 — r2)2

n>1 §w7:3”7/1n n>1 ,B,y,n
8r¢2 8r¢’?
Byy,m w,B,7,n
n%:l (G =72 (L =72

for r € (0,5/, 5.,1)-
Observe that limy\ 0ty (r) =1—p >0 and lim, sor | ug p4(r) = —00.
Thus it follows that the equation

15 54()

1+(1
BRI

=p, 1>0,pel0,1)

has a unique root situated in r1 € (0,5/, 5 ;).
(b) Let vy,p,4,n be the nth positive zero of the function g, 5 . In [9, Theorem
3(b)], the following equality was proved:

z
(14) 1+M: _Z

o2 27
gwﬁv( n>1 ﬁ% z

and it was shown in [9].

gwﬁ'y() 2T2
15 e 1+—F—= 121~ o E—— |z <r <y B4,1-
( ) ( gﬁ’y() ZUQ 2 | By

n>1  wW,B8,7,mn

From the equality (14) and n > 0, we have,

ng”@ﬁ(z)

16 g o)

222 790 5.(T)
=n Z v2 _ 52 =1 /UJ7 7’Y({r) ) |Z| <r< Vw,B,v,1+
n>1  w,B8,7,mn 9,8,y

By using the inequalities (15) and (16) we obtain
gw B, 'y( )

gw,ﬁ 'y( ) g B ’Y( )
|z <7 < vyp~1,m>0,p€[0,1). According to minimum principle for har-

monic functions, equality holds if and only if z = r. Thus, for r € (0, v, 8,4,1),
n>0and p € [0,1) we get

zg! z
ine {14 Zeoal)
|z]<r Yo%)

ng,ﬁ,'y (Z)

>1— 1
e —p p+(1+mn)

)

ng,ﬁ,v(z)
g:-’ﬁﬁ(z)

g, B, ~,( r)
9, ,3,7(7")

—p}Zl p+(1+n)—
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The function uy, g~ : (0,v4,8,4,1) = R, defined by

gw B, 'y( )
U py(r) =1—p+ (1 4+n)—F"""~,
k g ,ﬁ,v(r)
is strictly decreasing and lim,~ o Uy, g, (7) = 1—p > 0 and lim, »,,, ;U 5,4(7)
= —oo. Consequently, the equation 1+(1+17)g“’577(()) =p,n>0andpe€[0,1)

has a unique root ro in (0, vy, g,4,1).
(c) Let vy 8,4,n denote the nth positive zero of the function hy g~(2). In
[9, Theorem 3(c)], the following equations was obtained

an hsn() :

! )
hwﬁ,"/(z) n>1 CwBym T2

and in the same paper with the help of (17) the following inequality was given

zh! z rh! r
18)  ®m{1+ L”() >1+ L”() 2] <7 < Vg
hw7ﬁ77(z) h’w,,@,’y(r)

From (17), we have

zh!” o (2) z
(19) B ) D
hfuﬁ—y( z) nzzjl Vw,Bym — %
rh!” 5 (r)
w,8,4\T
=-—n—>="=, n>0,]2] <r<vygq1-
P (1) .
From (18) and (19), we have
zhi . (2) zhi . (2) rhi 5.A(T)
§R<1+m> Uﬁ P>1—P+(1+77)¢7
w,Byy ) w,Byy wtﬁ’y(r)

|z <7 <wvyp~1,m>0,p€[0,1). Due to the minimum principle for harmonic
function and equality holds if and only if z = r. Thus, we have

zh!” o (2) zh!” o (2) rh!" 5 ()
inf ¢R|[1+ /wﬂ’y /wﬂ’y — =1—p+(1+ %
|Z<T{ ( hwﬁ'y( ) ) hwﬁfy( ) P P ( 77) hwﬁ'y( )

For every r € (0,vw,8,4,1), n > 0, and p € [0,1). Since the function w,, g (r) :
(0,Vw,8,4,1) = R defined by

Wopn(r)=1=p—(1+m))

n>1

T
Vw,Bym — r’
as decreasing on (0, vy, g,,1) and lim,~ o wy, g, (1) = 1—=p, lim, ~, ,  we p~(7)

= —oo. It follows that the equation w, g~(r) = 0 has a unique root rg €
(0,v4,8,4,1) and this root is the radius of uniform convexity. O
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2.2. Radii of a-convexity of order p for the functions f. g ~,9w.8,4
and he, g,y

Now, we are going to investigate the radii of a-convexity of order p of the
functions f. 8,v; 9w 8,y and he, g 4. The technique used in the process of finding
the radii of a-convexity of order p in the next theorem is based on the ideas
from [31] and [7]. The results of the theorem are natural extensions of some
recent results see [9], where the special case of & = 1 and p = 0 was considered
on the Mittag-Leffler function. For proving the main results we will use the
following notation,

Hawu@) = (1- 02 v (1 i 5<(>)) /

Theorem 2.2. If (%,B) € Wi,v > 0,a > 0,p € [0,1), then the radius of
a-convezity of order p of the function f, g is the smallest positive root of the

equation
R0 (L) (1)
v ﬁ'y( r) B Ve, p(7)
where Wy, g (2) = 2° Ay 5.~ (2). The radius of a-convezity satisfies ro,p(fu.g,)
< Sl g1 < Sw,By1s Where 6, 541 and <, 5 | denote the first positive zeros
of Uy 5,4 and ¥, 5 respectively. Moreover the function o — 14,,(fu,p,~) s
strictly decreasing on [0,00) and consequently, we have v < 14 ,(fup~) <

75 (fw,p.~) for all a € (0,1),p € [0,1).

Proof. Without loss of generality we assume that o > 0, the case a = 0 was
proved in [9]. By using the definition of the function f,, g (2) we have

2fopy(2) 129,,5,(2)
fu,p.(2) B w,p(2)
Pl Mhsold) (1) ol
fi&ﬁﬁ(z) v w,fB, W( ) s \Ilwﬁﬁ( ) .

Now consider the following infinite product representations in [9],

D(B) Wy 5.4(2) —zBH<1— ” )

n>1

OLAPNE ﬂz‘“H<l‘<’25>’
w,B,y,n

n>1

o+« =P

1+

where ¢, 3.1 and q:u’ﬁml denote the first positive zeros of ¥, g, and \Ilfu’ﬁ’7
respectively By logarithmic differentiation we have

2V, 5 2 222
R I e
N4 7677( -z v ’ﬂ'y( ) -z

n>1 SwByn n>1 w,B8,7,n
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which imply that

J<aa fw,ﬁ,'y(z)) = (]_ — Q)M <]_ + W)

fw7ﬂ77(z) wﬁ'y(z)
R R D D D D
n>1 wBn T n>1 w.Bn

We know that if a > b > 0,z € C and A < 1, then for all |z] < b we have,

. . I
— > — )
(20) m() 8%(bz)—am 7]

From Lemma 1.1, it is clear that it is assumed that A € [0, 1], we do not need
the assumption A > 0 so using (20) for all 2 € (0,5, 5. ;). We obtain the
inequality

7,2
IR0 fonn 2 2+ (1- ) - S

n>1 Sw,B,7,n n>1 Sw,B,7,n

= l(J(oz,ﬁu,ﬁ,w(r)))’

[e%

where |z| = r. The zeros ¢, g and ¢/, 5 are interlacing. From [9, Lemma 1],
we have

(21) Sw, B,y < <£)76,'y'
The above inequality implies that for r € (0, ¢/, ﬁ,v,l)’ we have

infoenir) J(@, fu,,4(2)) = (  Ju.p4(r)) and the function 7 — J(e, fup.~(r))
is strictly decreasing on (0,¢/, Bml) Since

4r¢2 47‘§
nB’Yn _ Tw, By
__wpyn aE

2(2 7,)2

n>1 gw,ﬂ;y,n n>1 7[3 v,

Ared 5 om s s
<O‘Z _7«2)2*052(/2 —r2)2<0

n>1 wﬁvn n>1 Sw,B,7,m

Sl L) = (5 - a)

for v > 0 and r € (0, gw’ﬁ,%l) Again we used that the zeros ¢, 5., and ¢/, 5 o

are interlaced and for alln € N,y > 0, and 7 <y /S, 8,4,1- S, 5,1 We have that,

Sprn(Sopon =) < Spnn(Shpan —17)

We also have that limy~ o J (e, fu,g,(r))=1>pandlim, ~; J(e, fu,p4(r))
= —o00, which means that for z € D(ry). We have RJ(a, fw [3 w( r)) > p if and
only if r1 is the unique root of J(a, fu5~(r)) = p, situated in (0,¢/, 5. 1)
Finally using again the interlacing inequalities (21), we obtain the inequality

0 2r2
Do J(a, fwﬁv Z 2 — 2 _Z 72 _r2<07

n>1 va v,m n>1 gwaﬁv'}’vn
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where v > 0, > 0 and r € <Ov§1;,5,»y,1)- This implies that the function o —
J(a, fu.p,4(r)) is strictly decreasing on [0,00) for all v > 0, > 0 and r €
(0’§c:,/3,w,1) fixed. Consequently, as a function of « the unique root of the
equation J (o, f,, 5,~(r)) = p is strictly decreasing where p € [0,1),7 > 0 and

€ (0,5, .1)- Thus in the case when o € (0,1) the radius of a-convexity of
the function f, g, will be between the radius of convexity and the radius of
starlikeness of the function f, g . O

Theorem 2.3. If (%,5) € Wi,v > 0,a > 0,p € [0,1), then the radius of
a-convexity of order p of the function g, g~ is the smallest positive root of the

equation
r !
(1—0[) gw,ﬁ,fy() 1+ gwﬂ’y() =p
gUJ,BK‘/(T) gw 5,,}/(7’)

The radius of a-convexity satisfies Ta,p(gw,,4) < Vi g1 < Vw,By,1, where
UV, B,v,1 and U‘/’J)B)%l denote the first positive zeros of g. g~ and gc’uﬁ,V respec-
tively. Moreover the function o — 7o 5(gw,g,y) is strictly decreasing on [0, 00)

and consequently, we have 15 < 7o p(gw.6.4) < 7p(gw,p,y) for all a € (0,1),p €
[0,1).

Proof. Similarly, as the proof of Theorem 2.2, we assume that « > 0, the case
a = 0 was proved in [9]. By using the definition of the function g, g (z) and
the infinite product representation we have

2g,
1 + w7ﬂ7’y — _ Z 2)
gw /3,7( n>1 7,37n -z

where v, 3~,» is the nth positive zero of the g, g . Thus, we have

J(avgw,ﬁ,'y(z)) = (1 — Q)M (1 + W)

g‘*hﬁﬁ(z) gw B 'y(z)
:1_(1_@2*2 —a) s
n>1 w.B,7mn n>1 w,B,7,m

Applying the inequality (20), we have

1 1 1 2 2
SR (@ gu,pa(2)) 2 — + (1 - a) ) e el Dby s

nzl vav'Yvn nzl UUJ,B,’Y,TL
1
= (09054 (r):
where |z| = r. The above inequality implies that for r € (0,v[, 5. ;), we have
inf.ep(r) J (@ guw,6.4(2)) = J(@, 9w ,4(r)) and the function r — J(a, gu5,,(r))
is strictly decreasing on (0,v], 5. ;). Since

4rv?

SO0 ) = = (1= 0) ¥ s a3

n>1 UWvﬂa’Y»n n>1 UJ ﬁ Y,n

4rv
w,B,7,m
—r2)2 <0
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for v > 0 and 7 € (0,v], 5,,)- Again we used that the zeros v, g~n and

Uy, g are interlaced and for all n € N,y > 0, and r <, /vy g,4,1- V), 5,1 We

have that

12

2 2
Uwﬁa%n(vwﬂy’%n

oy (Vo Bm = )™

We also have that lim,~ 0 J(@, gw g4 (r)) =1>pandlim, ~,  J(@, gu,p~(7))
= —o00, which means that for z € D(ry). We have RJ(«, g, 5,4(r)) > p if and
only if 71 is the unique root of J(a, gw,p~(r)) = p, situated in (0,0, 5. 1)-

Finally, using again the interlacing inequalities (21), we obtain the inequality

o 2r2 22
50 (e () =D s =D

2
n>1 UW»B/Y"”/ n>1 w,B,’y,n r

—r?)? <

<0,

where v > 0, > 0 and 7 € (0,v], 5 ;). This implies that the function o —
J(@, gw,p,(r)) is strictly decreasing on [0,00) for all v > 0, > 0 and r €
(O,U;’ﬁﬁ’l) fixed. Consequently, as a function of « the unique root of the
equation J(«, gu,g,,(r)) = p is strictly decreasing where p € [0,1),7 > 0 and
7 € (0,v], 5., 1)- Thus in the case when a € (0, 1) the radius of a-convexity of
the function g, g, will be between the radius of convexity and the radius of
starlikeness of the function g, g ~- O

Theorem 2.4. If (1,8) €, > 0, > 0,p € [0,1), then the radius of a-
convezity of order p of the function hy g~ is the smallest positive root of the

equation
rh! r rh! r
(1 - o) Lepat) () 7,“’5”( A
hwvﬁ»'}/(r) hw,ﬂ,'y(r)

The radius of a-converity satisfies Ta,p(hw,pr) < V), 5.1 < Vup,1, where
!/ s e /
Uy, B,y,1 aNd Uy 1 denote the first positive zeros of hy, g~ and hw’ﬁﬁ
tively. Moreover the function o — 14 ,(he ) is strictly decreasing on [0, 00)
and consequently, we have 15, < 14, ,(hy ) < 75(he pgy) for all a € (0,1),p €

[0, 1).

respec-

Proof. From the infinite product representation [9]
zh!” z 2
1+ M —1— Z S —
hw’ﬁﬁ(z) n>1 Vw,Bym = 2

where v, 3,,» is the nth positive zero of the A, g,. Thus, we have

zh! 5 (%) zh! 5 (2)
Joﬁhw,,(z)):(l—a)%—ka 1+%
(e his o (2) W, ()

—l+(a-1)Y ———-a) ———.

n>1 Yw,B,7,m n>1  w,B,7mn
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Applying the inequality (20), we have

éi}%(J(a, hep(2))) é + (1 - cl)z) 2

n>1

v

D

Yw,Bym =T =5 YwByn

- é(J(a,hW,ﬁ,y(T)))v

where |z| = r. The above inequality implies that for r € (0,v[, 5 ), we have

(R4 (2)) = (0 b (1)

and the function r — J(a, ke, g,,(r)) is strictly decreasing on (0, U:J B~.1)- Since

9 Yw,B,y,n 7,6’,%

—J(a, h r) = (a—1 — T 0

or ( ) w,ﬂ,v( )) ( ); (Uw,B,'y,n — ; L Bvm — ,r)2 <
for v > 0 and 7 € (0,v, 5.,,)- Again we used that the zeros v, g~n and
V., 5. are interlaced and for all n € N,y > 0, and 7 < (Vu,8,4,1- U, g.,.1) We
have that

Uw’ﬂ”Yvn(Uc/u,,B,'y,n - T)Q <, w,B,v,n (UW,IB,’Y, - T)z'

We also have that lim,~ o J(c, hy, g~(7)) =1>p and limg oy (@ heg ()
= —00, which means that for z € D(r3). We have RJ(a, hy, g,(7)) > p if and
only if r3 is the unique root of J(a, hw g,4(7)) = p, situated in (0,v], 5 1)
Finally using again the interlacing inequalities (21), we obtain the inequality

%J(a,hwﬁﬁ(r)) = Z 77 — Z — <0,

n>1 Yw,Byy,n n>1 w,B,7,m

where v > 0, > 0 and 7 € (0,v, 5 ;). This implies that the function o —

J(a, hy (7)) is strictly decreasing on [0,00) for all v > 0,a > 0 and r €
(0,0, 5, . 1) fixed. Consequently, as a function of a the unique root of the
equation J (o, he, g(r)) = p is strictly decreasing where p € [0,1),7 > 0 and
7 € (0,v], 5., 1)- Thus in the case when a € (0,1) the radius of a-convexity of
the function h, g, Will be between the radius of convexity and the radius of
starlikeness of the function A, g ~. O

2.3. Radii of m-parabolic starlikeness of order p for the functions
fwnBy'Y’ gw,,B,'ya and h’w,ﬁ,’)‘

Now, our aim is to investigate the radii of n-parabolic starlikeness of order
p of the normalized forms of the generalized three parameter Mittag-Leffler
function, that is of f,, 3., gw.8,~ and h, g which are actually solutions of some
transcendental equations. For simplicity we use the notation A(w, 3,7v,2) =
é(w, B,7,—2?) for this theorem. The technique of determining the radii of 7-
parabolic starlikeness of order p in the next theorem follows the ideas comes
from [14]. The results of the next theorem are natural extensions of some recent
results see [36], where the special case of v = 1,77 = 0 was considered.
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Theorem 2.5. Let (1,8) € W;, v >0 and p € [0,1),n > 0.

(a) The radius of n-parabolic starlikeness of order p of f., g~ is 7} (fup.) =
T, B,~,1, Where Ty, g ~.1 15 the smallest positive zero of the transcendental
equation

(1 + U)T/\/(Wa 6;77T) - 6(p - 1))‘(("15 67777“) =0.

(b) The radius of n-parabolic starlikeness of order p of gu.g.~ 1575 (guw.p~) =
Yus,B,y,1, Where Yy, 8.1 15 the smallest positive zero of the transcendental
equation

(1 +77)TA/(L‘)’6’FY7T) - (p - 1)/\(‘*}757777") =0.

(c) The radius of n-parabolic starlikeness of order p of hy g is 7 (hw,gy) =
Zw,B,y,1, where 2, g 41 15 the smallest positive zero of the transcendental
equation

(1 + 77)\/;)‘/(% 6777 \/;) - 2(p - 1))‘(0‘)3 5;7, \/’F) =0.

Proof. Recall that the zeros of the Mittag-Leffler function ¢(w, 8,7, 2) are all
real and infinite product exists. Now from the infinite product representation

was proved in [9] which of the form
2
n>1 w,B,7,n

2=

and this infinite product is uniformly convergent on each compact subset of C.
Denoting, the above expression by A(w, 3,7, z), and by logarithmic differentia-

tion we get
A/(W,IB,’Y,Z) _ Z —2z
)‘(waﬂa/yvz) n>1 )\i,ﬂ,’y,n _227
which in turn implies that

(22) M =1-3 Z =)

fwﬁ’Y( n>1 wB'yn — 22

(23) Lw TS =12 0

9. (2) —22’
UJ7B’Y n>1 ,,B'yn

(24) ZwBy\ g Z U —

hu,p.(2) wS1 A Bn

We know that [6] if 2 € C and 6 € R are such that 6 > |z|, then

(2) oz (is)
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Thus the inequality

2 2
)\2 |Z| 2 Z R )\2 : 2 ’
w,By,m 2| w,By.m  F

is valid for every (%,b’) € Wi, v>0,n e Nand |z|] < Ay g,4,1, and therefore
under the same conditions we have that

2f! 5 (2) 1 222
w,p, _ E :
R <7> =1- B% A2 2

fw7ﬁ77(2) 77/21 wtﬁf‘f’n
1_72 2122 _ lelfosa 2D
71>1 Wﬂ,% —|z? fu&ﬁry(‘zb

! 2
R (Zgw’ﬁ”(z)> =1-R{) 2 = — 2

gwﬁﬁ(z) n>1"w,By.mn

N Nopm — 212 gupa(l2))

n>1 " w,B7n

and
zh!,
%( 7/@’7()):1_% Z i z
hwﬁ»’v( ) n>1 )‘w,ﬁ,%n —F
- n>1 Ai,ﬁ,’y,n - ‘Z| hw,ﬁﬁ(‘ZD
Now using triangle inequality ||z1| — |22]] < |21 — 22| we get
zf! z 1 952
fw,,@,’y( ) o 1‘ _ Z . z .
fwﬁv’y(z) B n>1 Aw,ﬂ,’y,n -z
Z 2|z|2 i |Z|fi,,[a,7(|z|)
- ﬁn>1 w,B,7v,n ‘Z|2 fwﬁﬁ(|2|)
zg’ z 222 2|22 zlg’ z
o) | |5 2|y MRy Ebagll)
gWaIBKY(Z) n>1 Aw,[ﬁ,fy,n -2 n>1 )\w,ﬂ,fy,n - |Z| viBa’Y(|Z|)
and

2| 211,64 (17])

Zhw@w()_’_ _ =1 et
U=l e =

h‘*’vﬁﬂ() n>1 " w87, < n>1 w87
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Hence we have

zf;ﬁﬁ(z)) 2f! 5 (2) 12177, 5 (12])

R ) —p| 22— =1 —p> (1 et ,

(fw,ﬁﬁ(z) Ul pzrm w1t
thluﬁ,v(z)) Zgév,ﬁry(z) |Z‘9L57(|Z|)

R (DB ) | 2B gl > (1 4g) e :

<9w,/3,w(z) " o (@) o (= I

and

o (DN |2 en(2) 21, 5 (2]

R w,By ) w,B,y 1> w,B,7 B 7

(hw,ﬁ,wz) s (2) p2Uamm )

where equalities are attained only when z = |z| = r. The minimum principle for
harmonic functions and the previous inequalities imply that the corresponding
inequalities in the above are valid if and only if we have |z| < za84.1, |2] <
Ya,8,y,1 and |z] < 24,841, respectively, where o841, Ya,8,7,1 and 24 54,1 are
the smallest positive roots of the following equations

r ;,5,7(7") _ _
(1+77) fw,ﬁ,'y(r) (77+P) - 07
(122D )

9uo,8,4(T) 7

rh’ r
(1+77)h:’;:((r)) —(m+p) =0,

which are equivalent to
(L+n)rXN(w, 8,7, 1) = Blp — DA w, B,7,7) =0,
(1 + U)TA/(W,IB,’}/,T) - (p - 1)/\(w7677771) = 07

(I +)VrXN(w, 8,7, V1) = 2(p — DA(w, B,7, V1) = 0.
We note that

1 272
lim (1 + 1—75 —_ s | — + =1—p>0
T\O( 77) ﬁ — )‘E;,ﬁ;y,n _ T2 (T] p) P
and
1 272
li 1 1—-— E —_ | - = —0o0.
”‘/)\Lr,rfliw,l( * 77) B A2 —r? (77 " ‘0) >~

n>1 "w,By.m

Hence we have (1 -+ )r\ (@, 8,7,7) — A(p — DA, 6,7,7) = 0 has a root in
(0, Aw,B,+,1). Similarly for other two equations. O

Remark 2.6. For n = 0, Theorem 2.5 reduces to [9, Theorem-1].
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2.4. Radii of strong starlikeness of order p for the functions f, 3.,
gwnBy’Y’ and hwvlgv'y

Our aim is to investigate the radii of strong starlikeness of order p of the
normalized forms of the generalized three parameter Mittag-Lefler function,
that is of fu 8.~, guw,8,y and hy, g~ which are the solutions of some equations.
The technique of determining the radii of strong starlikeness of order p in the
next theorem follows the ideas comes from [14].

Definition ([15]). A function f(z) € S is said to the class of univalent strongly
starlike of order p in D if it satisfies the inequalities:

arg<zfl(z)>' <P (0<p<1l,zeD).

f(2) 2

The radius of strong starlikeness of order p of the function f is defined in
[21].

3 (f) = {re (0,74) :

arg (foég))‘ < %”,0 <p<lze D(r)}.

Lemma 2.7 ([21]). If ¢ is any point in |argw| < Tp and if R, < R[c]sin Tp —
] cos §p, Sc] > 0. The disk |lw—c| < R is contained in the sector |argw| <
gp, 0 < p < 1. In particular when [c] = 0, the condition becomes R. <
csin 3 p.

The above definition and lemma are used to determine the radii of strong
starlikeness of order p for the functions of the form (1).

Theorem 2.8. Let (%,B) e Wi, v> 0,0 < p<1. The following are true.

(a) The radius of strong starlikeness of order p of the f,, g~ is the smallest
positive zero of (r) =0 in (0, A, 8,4,1) where

. T
— S1n —pP.
4 _ 7“4 2 p
n>1 w,B,7,n

P(r) = 2 Z (Al + 77510 50)
B

(b) The radius of strong starlikeness of order p of the g, g, is the smallest
positive zero of ¢(r) =0 in (0, A, g.~,1) where

r2(\? +r2¢in T
d(r) =2 ( wbivn 22 _ To.

_ 4
et w,Brym T 2

(c) The radius of strong starlikeness of order p of the hy, g is the smallest
positive zero p(r) =0 in (0, Ay 8,4,1) where

r(\2 +rsinZp) g
o(r) = Z ”)’\’i’%" — 202 _sin 5P
n>1 wBym T
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Proof. For |z| <r < |zx| < R > r, we have from [21, Lemma 3.2]

z r2 < Rr
— R2 _ 7“2.

(26)

Jr
z—z, R%2—1r2

Since the series }, -, % and >, -, ﬁ are convergent, from
3,7,n v,m
(26), (22), (23), and (2 )We have

/ 2 2
(27) 2fopn?) Z <25 osam™
fu,84(2) 6 n>1 4,,8,7, -t B n>1 )‘i”@’mn -t
)\2 ,,,2
(28) g, B, v( _ _9 Z <9 . w,B,7,m -
gwiﬁﬁ( n>1 u.) By, —r n>1 )‘w,B,'y,n -r
zh! 5 (%) 2 A2 r
By w,B,y,m
(20) |t {0 ) o3 Jedanl
hwﬁﬁ( ) r;l Ai,ﬁ,’y,n - T2 7; )\i',ﬁ,’)/,n - 7"2,

where equalities are attained only when z = |z| = r. For z € D(),, 3,4,1) and
Aw,B,vn denotes the nth positive zero of the Mittag-Lefller function. From
the Lemma 2.7, we see that the disc given by (27) is contained in the sector
largw| < Zp, if

BZ ,577:7“47 ,BZ S— singp

n>1 ‘UfB’Y” n>1 w,B,7,m

is satisfied. The above inequalities simplifies to 1 (r) < 0 where

”@’%n +r?singp) &
5; )\i,ﬂ,%n*ﬂ —sin 5 p.
We note that
Z 27")\w/37n+27’ Awﬁ7n+4r )\wﬁvnsmgp
ﬂ 1 (Ai,ﬁ,%n —rt)?

Also lim,~ o (r) < 0 and lim, »y, , , ¥(r) = co. Thus 9(r) = 0 has a unique
root Ry in (0, A, 8,4,1). Hence the function f, g is strongly starlike in |z| <
Ry. This completes the proof of part (a).

The disc given by (28) is contained in the sector |argw| < Fp, if

()\QBA/n—i-rQSingp) o
(b(?“):?Z 3 — — sin o p.

n>1 w,B,7,m

Also lim,~ 0 ¢(r) < 0 and lim, y, , ., ¢(r) = co. This completes the proof of
part (b).
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The disc given by (29) is contained in the sector |argw| < Fp, if
r(\2 +rsingp)
— sin —p.

B, s
P =3 i 2

n>1 vaﬂa’%n

Also lim,~ o ¢(r) < 0 and lim; xy, , , ¢(r) = oo. This completes the proof of
part(c). O
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