• Title/Summary/Keyword: Paper ash

Search Result 685, Processing Time 0.027 seconds

Material Analysis and Conservation Treatment of The Annals of Joseon Dynasty Storage Box (조선왕조실록상자의 재질분석과 보존처리)

  • Park, Su Zin;Jung, Da Un;Yi, Young Hee
    • Journal of Conservation Science
    • /
    • v.33 no.1
    • /
    • pp.17-24
    • /
    • 2017
  • Studies were conducted on manufacturing techniques by applying microscopy and conservation treatments on the annals of Joseon dynasty storage box at the National Museum of Korea. The results revealed that lime tree wood(Tilla spp.) was used to make the annals of Joseon dynasty storage box. Lacquering techniques were used to coat the box with a layer of lacquer and bone ash and then cover it with traditional Korean paper. After being covered with traditional Korean paper, more layers were applied in the following sequence: mud ashes, black lacquer, pure lacquer, and black lacquer. Before conservation treatments, some components and lacquer layers were missing in addition wood joint were loose. Therefore, conservation and restoration should be conducted based on the identified wood and by observing the shape of the remaining components.

Effect of Torrefaction Condition on The Chemical Composition and Fuel Characteristics of Larch wood (낙엽송재의 화학적 조성 및 연료적 특성에 대한 반탄화 조건의 영향)

  • Kim, Sang Tae;Lee, Jae-Jung;Park, Dae-Hak;Yang, In;Han, Gyu-Seong;Ahn, Byoung Jun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.122-134
    • /
    • 2015
  • This study was conducted to investigate the potential of torrefied larch wood as a raw material of pellets. First of all, larch chip was torrefied at the temperatures of 230, 250 and $270^{\circ}C$ for 30, 50 and 70 min. Secondly, moisture content, moisture absorption, higher heating value and ash content of the torrefied chip were measured to examine the effects of torrefaction conditions on the fuel characteristics of larch. Thirdly, surfaces of the torrefied chip were observed by light microscope (LM), field emission scanning microscope (FE-SEM) and SEM-energy dispersive spectroscopy (EDXS). With the increases of torrefied temperature and time, contents of lignin increased and those of hemicellulose reduced. Moisture content of torrefied larch chip was greatly lower than that of non-torrefied chip. Moisture absorption of the torrefied chip decreased as torrefaction temperature increased. As torrefaction temperature increased, higher heating value and ash content of larch chip increased. However, durability of torrefied-larch pellets was remarkably lower comparing to non-torrefied-larch pellets. When surface of larch chip was observed by LM and FE-SEM, surface color and cell wall of the chip was getting darker and more collapsed with the increases of torrefaction conditions. Through the analysis of SEM-EDXS, distribution and quantity of lignin existing on the surface of larch chip increased with the increases of torrefied conditions. In conclusion, $270^{\circ}C$/50 min might be an optimal condition for the torrefaction of larch with the aspect of fuel characteristics, but torrefaction condition of $230^{\circ}C$/30 min should be considered according to the durability of torrefied-larch pellets.

Impregnation Effects of Water Soluble Organic and Inorganic Chemicals into Micropore of Cell Wall of Waste Paper fiber(I) (페지섬유의 세포벽 Micropore 속으로 수용성 유기 및 무기화합물 충전효과(제1보))

  • 이병근
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.1
    • /
    • pp.36-42
    • /
    • 1997
  • The fiber wall filling(FWF) technology, which is based on Precipitatin of fillers in the micropores of the cell wall structure of never-dried chemical pulp fiber, has been developed to improve filling and loading process in papermaking. In presenting FWF technique here, micropores of pulp fiber are first impregnated with an ionic solution of water soluble salt and consecutively impregnated with the second salt solution. This procedure generates an insoluble precipitate within the micropores of cell wall by chemical interaction of these two ionic salt solutions This is the first attempts to use FWF technology for the quality of waste paper grade which is recycled in papermaking, even though this FWF technology has been impressively improved for never-dried chemical pulp in filling and loading process of papermaking. The precipitated amount of CaCO$_3$ and SrCO$_3$ reached 5-6% and 4-5% of the waste paper weight respectively, which was measured by ash content of the burned waste paper fiber. On the other way the precipitated amounts of those materials impregnated into never-dried chemical pulp fiber have reached 17-18% and 16-18% respectively. The micropore loading technique gives optical and physical properties to the handsheets formed with celt-wall-filled fibers which are better than those handsheet properties resulting from conventional loading. The papers made from the cell-wall-filled pulps are stronger than those with the customary location of filler between the fibers.

  • PDF

Resistance of Cementitious Binders to Chloride Induced Corrosion of Embedded Steel by Electrochemical and Microstructural Studies

  • Song, Ha-Won;Ann, Ki-Yong;Kim, Tae-Sang
    • Corrosion Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.74-80
    • /
    • 2009
  • The high alkaline property in the concrete pore solution protects the embedded steel in concrete from corrosion due to aggressive ions attack. However, a continuous supply of those ions, in particular, chlorides altogether with a pH fall in electrochemical reaction on the steel surface eventually depassivate the steel to corrode. To mitigate chloride-induced corrosion in concrete structures, finely grained mineral admixtures, for example, pulverized fuel ash (PFA), ground granulated blast furnace slag (GGBS) and silica fume (SF) have been often advised to replace ordinary Portland cement (OPC) partially as binder. A consistent assessment of those partial replacements has been rarely performed with respect to the resistance of each binder to corrosion, although the studies for each binder were extensively looked into in a way of measuring the corrosion rate, influence of microstructure or chemistry of chlorides ions with cement hydrations. The paper studies the behavior of steel corrosion, chloride transport, pore structure and buffering capacity of those cementitious binders. The corrosion rate of steel in mortars of OPC, 30% PFA, 60% GGBS and 10% SF respectively, with chloride in cast ranging from 0.0 to 3.0% by weight of binder was measured at 7, 28 and 150 days to determine the chloride threshold level and the rate of corrosion propagation, using the anodic polarization technique. Mercury intrusion porosimetry was also applied to cement pastes of each binder at 7 and 28 days to ensure the development of pore structure. Finally, the release rate of bound chlorides (i.e. buffering capacity) was measured at 150 days. The chloride threshold level was determined assuming that the corrosion rate is beyond 1-2 mA/$m^3$ at corrosion and the order of the level was OPC > 10% SF > 60% GGBS > 30% PFA. Mercury intrusion porosimetry showed that 10% SF paste produced the most dense pore structure, followed by 60% GGBS, 30% PFA and OPC pastes, respectively. It was found that OPC itself is beneficial in resisting to corrosion initiation, but use of pozzolanic materials as binders shows more resistance to chloride transport into concrete, thus delay the onset of corrosion.

Effect of the Curing Temperature on Autogenous Shrinkage of the High Strength Mortar incorporating Mineral Admixtures (양생온도가 혼화재 치환 고강도 모르터의 응결 및 자기수축에 미치는 영향)

  • Han, Min-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.127-133
    • /
    • 2012
  • In this paper, tests were carried out to monitor the effect of the curing temperature on autogenous shrinkage of the high strength cement mortar incorporating silica fume, blast furnace slag and fly ash ranged from 10%~30% by mass of cement. The curing temperatures were varied from $5^{\circ}C$ to $35^{\circ}C$, respectively. According to results, the setting time exhibited to delay with increase of admixture and drop of temperature. As for the effect of curing temperature on autogenous shrinkage, the increase of SF and BS resulted in an increase of autogenous shrinkage, while the use of FA decrease. The higher the curing temperature is, the greater the autogenous shrinkage is. This is due to the accelerated hydration rate of cement. It is found that the maturity does not consider the effect of curing temperature on autogenous shrinkage.

  • PDF

Properties of Fresh State and Characteristics of Shrinkage in Concrete Containing Low Fineness GGBFS (저분말도 고로슬래그 미분말을 혼입한 콘크리트의 굳지 않은 상태의 특성 및 수축 특성)

  • Kim, Tae-Hoon;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • GGBFS(Ground Granulated Blast Furnace Slag) is one of the most actively used mineral admixtures with excellent long-aged strength and chloride diffusion resistance. Unlike Standard covering GGBFS in Japan and the U.K., the domestic standard for GGBFS does not contain low fineness of GGBFS under 4000 grade. In this paper, several basic tests are carried out for the concrete with 3,000 grade GGBFS concrete and ternary blended concrete for reducing hydration heat by mixing 4,000 grade GGBFS and fly ash, such as fresh concrete properties, compressive strength, and shrinkage properties. The air content and slump between the ternary blended concrete and the concrete with low-fineness GGBFS showed the similar level, and the results of difference in setting time from them were less than 20 minutes, showing no significant difference. In the evaluation of compressive strength and shrinkage characteristics, the ternary blended concrete showed lower long-aged strength and higher shrinkage than the low-fineness GGBFS concrete.

Mechanical and durability properties of self-compacting concrete with blended binders

  • Xie, T.Y.;Elchalakani, M.;Mohamed Ali, M.S.;Dong, M.H.;Karrech, A.;Li, G.
    • Computers and Concrete
    • /
    • v.22 no.4
    • /
    • pp.407-417
    • /
    • 2018
  • Over the past three decades, self-compacting concrete (SCC), which is characterized by its superior rheological properties, has been gradually used in construction industry. It is now recognized that the application of SCC using supplementary cementitious materials (SCM) is highly attractive and promising technology reducing the environmental impact of the construction industry and reducing the higher materials costs. This paper presents an experimental study that investigated the mechanical and durability properties of SCCs manufactured with blended binders including fly ash, slag, and micro-silica. A total of 8 batches of SCCs were manufactured. As series of tests were conducted to establish the rheological properties, compressive strength, and durability properties including the water absorption, water permeability, rapid chloride permeability and initial surface absorption of the SCCs. The influences of the SCC strength grade, blended types and content on the properties of the SCCs are investigated. Unified reactive indices are proposed based on the mix proportion and the chemical composition of the corresponding binders are used to assess the compressive strength and strength development of the SCCs. The results also indicate the differences in the underlying mechanisms to drive the durability properties of the SCC at the different strength grades.

Effect of magnesium sulphate solution on compressive strength and sorptivity of blended concrete

  • Jena, Trilochan;Panda, Kishor C.
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.267-278
    • /
    • 2020
  • This paper reports on the result of an experimental investigation carried out to study the compressive strength and sorptivity properties of blended cement concrete exposed to 5% and 10% MgSO4 solution using fly ash (FA) and silpozz. Usually in sulphate environment the minimum grade of concrete is M30 and the mix design is done for target mean strength of 39 MPa. Silpozz is manufactured by burning of agro-waste rice husk in designed furnace in between 600° to 700℃ which is one of the main agricultural residues obtained from the outer covering of rice grains during the milling process. There are four mix series taken with control mix. The control mix made 0% replacement of FA and silpozz with Ordinary Portland Cement (OPC). The first mix series made 0% FA and 10-30% replacement of silpozz with OPC. The second mix series made with 10% FA and 10-40% replacement of silpozz with OPC. The third mix series made 20% FA and 10-30% replacement of silpozz with OPC and the fourth mix series made 30% FA and 10-20% silpozz replaced with OPC. The samples (cubes) are prepared and cured in normal water and 5% and 10% MgSO4 solution for 7, 28 and 90 days. The studied parameters are compressive strength and strength deterioration factor (SDF) for 7, 28 and 90 days. The water absorption and sorptivity tests have been done after 28 days of normal water and magnesium sulphate solution curing. The investigation reflects that the blended cement concrete incorporating FA and silpozz showing better resistance against MgSO4 solution when compared to normal water curing (NWC) samples.

Sand particle-Induced deterioration of thermal barrier coatings on gas turbine blades

  • Murugan, Muthuvel;Ghoshal, Anindya;Walock, Michael J.;Barnett, Blake B.;Pepi, Marc S.;Kerner, Kevin A.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.1
    • /
    • pp.37-52
    • /
    • 2017
  • Gas turbines operating in dusty or sandy environment polluted with micron-sized solid particles are highly prone to blade surface erosion damage in compressor stages and molten sand attack in the hot-sections of turbine stages. Commercial/Military fixed-wing aircraft engines and helicopter engines often have to operate over sandy terrains in the middle eastern countries or in volcanic zones; on the other hand gas turbines in marine applications are subjected to salt spray, while the coal-burning industrial power generation turbines are subjected to fly-ash. The presence of solid particles in the working fluid medium has an adverse effect on the durability of these engines as well as performance. Typical turbine blade damages include blade coating wear, sand glazing, Calcia-Magnesia-Alumina-Silicate (CMAS) attack, oxidation, plugged cooling holes, all of which can cause rapid performance deterioration including loss of aircraft. The focus of this research work is to simulate particle-surface kinetic interaction on typical turbomachinery material targets using non-linear dynamic impact analysis. The objective of this research is to understand the interfacial kinetic behaviors that can provide insights into the physics of particle interactions and to enable leap ahead technologies in material choices and to develop sand-phobic thermal barrier coatings for turbine blades. This paper outlines the research efforts at the U.S Army Research Laboratory to come up with novel turbine blade multifunctional protective coatings that are sand-phobic, sand impact wear resistant, as well as have very low thermal conductivity for improved performance of future gas turbine engines. The research scope includes development of protective coatings for both nickel-based super alloys and ceramic matrix composites.

Development of stratospheric Lidar for observation of volcano aerosols in the stratosphere over Korea (한반도 성층권 에어로졸 관측을 위한 성층권 라이다 개발)

  • Shin, Dong Ho;Noh, Young Min;Lee, Kwon H.;Jang, Eun Suk;Shin, Sung Kyun;Kim, Young J.
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.581-588
    • /
    • 2013
  • We developed the three channel lidar system to measure stratospheric aerosols at the Gwangju Institute for Science and Technology (GIST), a suburban site in Republic of Korea. The system provides backscatter coefficient (${\beta}$) at 532 and 1064 nm as well as depolarization ratios (${\delta}$) at 532 nm ($2{\beta}+1{\delta}$) using the doubled Nd:YAG laser wavelength at 532 and 1064 nm. The lidar system is optimized to measure stratospheric aerosols such as volcanic ashes. This paper describes the details of the optical setup, data acquisition system, and analysis method. This study shows an example of measuring stratospheric aerosols emitted by the volcanic eruption which occurred in Mt. Nabro ($13.37^{\circ}$ N, $41.70^{\circ}$ E).