Browse > Article
http://dx.doi.org/10.7780/kjrs.2013.29.5.13

Development of stratospheric Lidar for observation of volcano aerosols in the stratosphere over Korea  

Shin, Dong Ho (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology (GIST))
Noh, Young Min (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology (GIST))
Lee, Kwon H. (Department of Geoinformatics Engineering, Kyungil University)
Jang, Eun Suk (Faculty of Engineering, Hanzhong University)
Shin, Sung Kyun (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology (GIST))
Kim, Young J. (School of Environmental Science & Engineering, Gwangju Institute of Science and Technology (GIST))
Publication Information
Korean Journal of Remote Sensing / v.29, no.5, 2013 , pp. 581-588 More about this Journal
Abstract
We developed the three channel lidar system to measure stratospheric aerosols at the Gwangju Institute for Science and Technology (GIST), a suburban site in Republic of Korea. The system provides backscatter coefficient (${\beta}$) at 532 and 1064 nm as well as depolarization ratios (${\delta}$) at 532 nm ($2{\beta}+1{\delta}$) using the doubled Nd:YAG laser wavelength at 532 and 1064 nm. The lidar system is optimized to measure stratospheric aerosols such as volcanic ashes. This paper describes the details of the optical setup, data acquisition system, and analysis method. This study shows an example of measuring stratospheric aerosols emitted by the volcanic eruption which occurred in Mt. Nabro ($13.37^{\circ}$ N, $41.70^{\circ}$ E).
Keywords
Lidar; Volcano ash; Stratospheric aerosols; Vertical profile;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Andres, R., and A. Kasgnoc, 1998. A time-averaged inventory of subaerial volcanic sulfur emissions, Journal of Geophysical Research: Atmospheres (1984-2012), 103(D19): 25251-25261.   DOI
2 Behrendt, A., and T. Nakamura, 2002. Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature, Optics Express, 10(16): 805-817.   DOI
3 Bluth, G.J., S.D. Doiron, C. C. Schnetzler, A.J. Krueger, and L.S. Walter, 1992. Global tracking of the SO2 clouds from the June, 1991 Mount Pinatubo eruptions, Geophysical Research Letters, 19(2): 151-154.   DOI
4 Chen, W.-N., C.-W. Chiang, and J.-B. Nee, 2002. Lidar ratio and depolarization ratio for cirrus clouds, Applied Optics, 41(30): 6470-6476.   DOI
5 Chin, M., and D.J. Jacob, 1996. Anthropogenic and natural contributions to tropospheric sulfate: A global model analysis, Journal of Geophysical Research: Atmospheres (1984-2012), 101(D13):18691-18699.   DOI
6 Eckhardt, S., A. Prata, P. Seibert, K. Stebel, and A. Stohl, 2008. Estimation of the vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements and inverse transport modeling, Atmospheric Chemistry and Physics, 8(14):3881-3897.   DOI
7 Freudenthaler, V., M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Muller, D. Althausen, M. Wirth, and A. Fix, 2009. Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006, Tellus B, 61(1): 165-179.   DOI   ScienceOn
8 Graf, H.F., J. Feichter, and B. Langmann, 1997. Volcanic sulfur emissions: Estimates of source strength and its contribution to the global sulfate distribution, Journal of Geophysical Research: Atmospheres (1984-2012), 102(D9): 10727-10738.   DOI
9 Halmer, M., H.-U. Schmincke, and H.-F. Graf, 2002. The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years, Journal of Volcanology and Geothermal Research, 115(3):511-528.   DOI   ScienceOn
10 Haywood, J., and O. Boucher, 2000. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review, Reviews of Geophysics, 38(4): 513-543.   DOI   ScienceOn
11 Klett, J.D., 1981. Stable analytical inversion solution for processing lidar returns, Applied Optics, 20(2): 211-220.   DOI   ScienceOn
12 Hofmann, D., J. Barnes, M. O'Neill, M. Trudeau, and R. Neely, 2009. Increase in background stratospheric aerosol observed with lidar at Mauna Loa Observatory and Boulder, Colorado, Geophysical Research Letters, 36(15): L15808, doi: 10.1029/2009GL039008.   DOI   ScienceOn
13 Jager, H., and T. Deshler, 2002. Lidar backscatter to extinction, mass and area conversions for stratospheric aerosols based on midlatitude balloonborne size distribution measurements, Geophysical Research Letters, 29(19): 1929, doi:10.1029/2002GL015609.   DOI   ScienceOn
14 Jager, H., and T. Deshler, 2003. Correction to "Lidar backscatter to extinction, mass and area conversions for stratospheric aerosols based on midlatitude balloonborne size distribution measurements", Geophysical Research Letters, 30(7): 1382, doi:10.1029/2003GL017189.   DOI
15 Longhurst, J.W., D.W. Raper, D.S. Lee, B.A. Heath, B. Conlan, and H.J. King, 1993. Acid deposition: a select review 1852-1990: 1. Emissions, transport, deposition, effects on freshwater systems and forests, Fuel, 72(9): 1261-1280.   DOI   ScienceOn
16 Mattis, I., M. Tesche, M. Grein, V. Freudenthaler, and D. Müller, 2009. Systematic error of lidar profiles caused by a polarization-dependent receiver transmission: Quantification and error correction scheme, Applied Optics, 48(14):2742-2751.   DOI
17 Muller, D., I. Mattis, B. Tatarov, Y. Noh, D. Shin, S. Shin, K. Lee, Y. Kim, N. Sugimoto, 2010. Mineral quartz concentration measurements of mixed mineral dust/urban haze pollution plumes over Korea with multiwavelength aerosol Ramanquartz lidar, Geophysical Research Letters, 37(20): L20810, doi: 10.1029/2010GL044633.   DOI   ScienceOn
18 Noh, Y.M., D. Muller, I. Mattis, H. Lee, and Y.J. Kim, 2011. Vertically resolved light-absorption characteristics and the influence of relative humidity on particle properties: Multiwavelength Raman lidar observations of East Asian aerosol types over Korea, Journal of geophysical research, 116(D6): D06206, doi: 10.1029/2010JD014873.   DOI
19 Noh, Y.M., Y.J. Kim, B.C. Choi, and T. Murayama, 2007. Aerosol lidar ratio characteristics measured by a multi-wavelength Raman lidar system at Anmyeon Island, Korea, Atmospheric Research, 86(1): 76-87.   DOI   ScienceOn
20 Noh, Y.M., Y.J. Kim, and D. Muller, 2008. Seasonal characteristics of lidar ratios measured with a Raman lidar at Gwangju, Korea in spring and autumn, Atmospheric Environment, 42(9): 2208-2224.   DOI   ScienceOn
21 No, Y.M., C.K. Lee, K.C. Kim, S.K. Shin, D.H. Shin, and S.C. Choi, 2013. Retrieval of Vertical Single-scattering albedo of Asian dust using Multi-wavelength Raman Lidar System, Korean Journal of Remote Sensing, 29(4): 415-421.   과학기술학회마을   DOI   ScienceOn
22 Ramaswamy, V., M.L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, K. Labitzke, and J.J. Lin, 2001. Stratospheric temperature trends: Observations and model simulations, Reviews of Geophysics, 39(1): 71-122.   DOI   ScienceOn
23 Robock, A., 2000. Volcanic eruptions and climate, Reviews of Geophysics, 38(2): 191-219.   DOI   ScienceOn
24 Sassen, K., J. Zhu, P. Webley, K. Dean, and P. Cobb, 2007. Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska, Geophysical Research Letters, 34(8): L08803, doi: 10.1029/2006GL027237.   DOI   ScienceOn
25 Schätzel, K., 1986. Dead time correction of photon correlation functions, Applied Physics B, 41(2):95-102.
26 Sharma, A., and J. Walker, 1992. Paralyzable and nonparalyzable deadtime analysis in spatial photon counting, Review of Scientific Instruments, 63(12): 5784-5793.   DOI
27 Winker, D., and M. Osborn, 1992. Preliminary analysis of observations of the Pinatubo volcanic plume with a polarization-sensitive lidar. Geophysical Research Letters, 19(2): 171-174.   DOI
28 Tatarov, B., D. Muller, D.H. Shin, S.K. Shin, I. Mattis, P. Seifert, Y.M. Noh, Y. Kim, and N. Sugimoto, 2011. Lidar measurements of Raman scattering at ultraviolet wavelength from mineral dust over East Asia, Optics Express, 19(2): 1569-1581.   DOI
29 Uchino, O., T. Sakai, T. Nagai, K. Nakamae, I. Morino, K. Arai, H. Okumura, S. Takubo, T. Kawasaki, and Y. Mano, 2012. On recent (2008-2012) stratospheric aerosols observed by lidar over Japan, Atmospheric Chemistry and Physics, 12(24): 11975-11984.   DOI
30 Whiteman, D.N., 2003. Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations, Applied Optics, 42(15): 2571-2592.   DOI
31 Witham, C., M. Hort, R. Potts, R. Servranckx, P. Husson, and F. Bonnardot, 2007. Comparison of VAAC atmospheric dispersion models using the 1 November 2004 Grimsvötn eruption, Meteorological Applications, 14(1): 27-38.   DOI   ScienceOn
32 Yu, T., W.I. Rose, and A. Prata, 2002. Atmospheric correction for satellite-based volcanic ash mapping and retrievals using "split window" IR data from GOES and AVHRR, Journal of geophysical research, 107(D16): 4311, doi:10.1029/2001JD000706.   DOI
33 Zhang, Q., J. Jimenez, M. Canagaratna, J. Allan, H. Coe, I. Ulbrich, M. Alfarra, A. Takami, A. Middlebrook, and Y. Sun, 2007. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophysical Research Letters, 34(13): L13801, doi:10.1029/2007GL029979.   DOI   ScienceOn