• 제목/요약/키워드: Panel data regression model

검색결과 326건 처리시간 0.02초

Restricted maximum likelihood estimation of a censored random effects panel regression model

  • Lee, Minah;Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • 제26권4호
    • /
    • pp.371-383
    • /
    • 2019
  • Panel data sets have been developed in various areas, and many recent studies have analyzed panel, or longitudinal data sets. Maximum likelihood (ML) may be the most common statistical method for analyzing panel data models; however, the inference based on the ML estimate will have an inflated Type I error because the ML method tends to give a downwardly biased estimate of variance components when the sample size is small. The under estimation could be severe when data is incomplete. This paper proposes the restricted maximum likelihood (REML) method for a random effects panel data model with a censored dependent variable. Note that the likelihood function of the model is complex in that it includes a multidimensional integral. Many authors proposed to use integral approximation methods for the computation of likelihood function; however, it is well known that integral approximation methods are inadequate for high dimensional integrals in practice. This paper introduces to use the moments of truncated multivariate normal random vector for the calculation of multidimensional integral. In addition, a proper asymptotic standard error of REML estimate is given.

Asymptotic Properties of the Disturbance Variance Estimator in a Spatial Panel Data Regression Model with a Measurement Error Component

  • Lee, Jae-Jun
    • Communications for Statistical Applications and Methods
    • /
    • 제17권3호
    • /
    • pp.349-356
    • /
    • 2010
  • The ordinary least squares based estimator of the disturbance variance in a regression model for spatial panel data is shown to be asymptotically unbiased and weakly consistent in the context of SAR(1), SMA(1) and SARMA(1,1)-disturbances when there is measurement error in the regressor matrix.

The Effect of First Observation in Panel Regression Model with Serially Correlated Error Components

  • Song, Seuck-Heun
    • Communications for Statistical Applications and Methods
    • /
    • 제6권3호
    • /
    • pp.667-676
    • /
    • 1999
  • We investigate the effects of omission of initial observations in each individuals in the panel data regression model when the disturbances follow a serially correlated one way error components. We show that the first transformed observation can have a relative large hat matrix diagonal component and a large influence on parameter estimates when the correlation coefficient is large in absolute value.

  • PDF

LM Tests in Nested Serially Correlated Error Components Model with Panel Data

  • Song, Seuck-Heun;Jung, Byoung-Cheol;Myoungshic Jhun
    • Journal of the Korean Statistical Society
    • /
    • 제30권4호
    • /
    • pp.541-550
    • /
    • 2001
  • This paper considers a panel data regression model in which the disturbances follow a nested error components with serial correlation. Given this model, this paper derives several Lagrange Multiplier(LM) testis for the presence of serial correlation as well as random individual effects, nested effects, and for existence of serial correlation given random individual and nested effects.

  • PDF

패널회귀모형에서 예측량의 효율에 관한 비교 (A Comparison of Predictors in a Panel Data Regression Model)

  • 정병철;조민화;송석헌
    • 응용통계연구
    • /
    • 제14권1호
    • /
    • pp.121-135
    • /
    • 2001
  • 본 논문에서는 이원오차성분을 가지는 패널회귀모형에서 미래시점에 대한 다양한 예측량들을 유도하고, 예측량들의 효율성을 모의실험을 통하여 비교하였다. 모의실험 결과, FGLS추정량을 이용한 예측량들은 참 GLS를 이용한 예측량과 효율성에서 서로 큰차이를 보이지 않았다. 또한 계산상 매우 복잡한 ML과 REML을 이용한 예측량과도 거의 비슷한 효율성을 보여주었다.

  • PDF

회귀나무 모형을 이용한 패널데이터 분석 (Panel data analysis with regression trees)

  • 장영재
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권6호
    • /
    • pp.1253-1262
    • /
    • 2014
  • 회귀나무 (regression tree)는 독립변수로 이루어진 공간을 재귀적으로 분할하고 해당 영역에서 종속변수의 최선의 예측값을 찾고자 하는 비모수적 방법론이다. 회귀나무 모형이 제안된 이래 로지스틱 회귀나무모형이나 분위수 회귀나무모형과 같이 유연하고 다양한 모형적합을 위한 연구가 진행되어 왔다. 최근에 들어서는 Sela와 Simonoff (2012)의 RE-EM 알고리즘, Loh와 Zheng (2013)의 GUIDE 등 패널데이터와 관련하여 진일보한 나무모형 알고리즘도 제안되었다. 본 논문에서는 각 알고리즘을 소개하고 특징을 살펴보는 한편, 실험 데이터를 생성하여 평균제곱오차 (mean squared error)를 바탕으로 예측력을 비교하였다. 분석결과, RE-EM 알고리즘의 예측력이 상대적으로 우수하게 나타났다. 이 알고리즘을 통해 기업경기실사지수 업종별 패널자료를 분석한 결과 최근의 업황에 가장 큰 영향을 미치는 요소는 매출 실적으로 나타났으며 매출 상위 그룹의 경우 비제조업이 제조업에 비해 업황에 대한 판단이 긍정적인 것으로 나타났다.

Inclusive Growth Analysis in Central Sulawesi, The Eastern Province of Indonesia 2015-2019

  • PRAKOSO, Andhika Dimas;AGUSTINA, Neli
    • Asian Journal of Business Environment
    • /
    • 제12권2호
    • /
    • pp.1-12
    • /
    • 2022
  • Purpose: This study aims to analyze the inclusive growth in Central Sulawesi Province, an eastern province of Indonesia, up to the districts/cities level. The inclusive growth is analyzed by using Ramos, Ranieri, and Lammens' index that has three indicators which are employment, poverty, and income inequality. Research design, data, and methodology: This study uses panel data of 13 districts/cities in Central Sulawesi Province from 2015 to 2019. The statistical regression used is the panel regression method to analyze the determinants of inclusive growth there. Results: The study found that the average inclusive growth of districts/cities in Central Sulawesi is increasing from the low-level in 2015 to mid-level in 2019. The panel's data regression using fixed effect model FGLS-SUR found Investment (GFCF), Road Infrastructure, HDI, and Processing Industry have a significant positive effect. Regional minimum wage (RMW) has a significant negative effect. Government Expenditure on Education and Health Function has no significant positive effect on inclusive growth. Conclusions: throughout the study period, gini coefficient and poverty rate is slowly decreasing, while employment to population ratio remains volatile in districts/cities of Central Sulawesi.

Asymptotic Distribution of the LM Test Statistic for the Nested Error Component Regression Model

  • Jung, Byoung-Cheol;Myoungshic Jhun;Song, Seuck-Heun
    • Journal of the Korean Statistical Society
    • /
    • 제28권4호
    • /
    • pp.489-501
    • /
    • 1999
  • In this paper, we consider the panel data regression model in which the disturbances have nested error component. We derive a Lagrange Multiplier(LM) test which is jointly testing for the presence of random individual effects and nested effects under the normality assumption of the disturbances. This test extends the earlier work of Breusch and Pagan(1980) and Baltagi and Li(1991). Further, it is shown that this LM test has the same asymptotic distribution without normality assumption of the disturbances.

  • PDF

이원오차성분을 갖는 패널회귀모형의 모형식별검정 (Test of Model Specification in Panel Regression Model with Two Error Components)

  • 송석헌;김영지;황선영
    • 응용통계연구
    • /
    • 제19권3호
    • /
    • pp.461-479
    • /
    • 2006
  • 본 논문에서는 이원오차성분을 갖는 패널회귀모형에서 모형식별을 위하여 LM 검정통계량을 유도하고 검정통계량의 연산을 위하여 인공회귀방법(Double-Length Artificial Regression, DLR)을 이용한다. 모의 실험 결과, 소표본의 경 우에는 Outer-Product Gradient(OPG)에 근거한 LM 검정통계량은 유위수준이 과대기각하는 경향을 보인 반면 DLR에 근거한 LM 검정통계량은 명목유의수준을 잘 유지하고 검정력도 높게 나타났다.

A computational note on maximum likelihood estimation in random effects panel probit model

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • 제26권3호
    • /
    • pp.315-323
    • /
    • 2019
  • Panel data sets have recently been developed in various areas, and many recent studies have analyzed panel, or longitudinal data sets. Often a dichotomous dependent variable occur in survival analysis, biomedical and epidemiological studies that is analyzed by a generalized linear mixed effects model (GLMM). The most common estimation method for the binary panel data may be the maximum likelihood (ML). Many statistical packages provide ML estimates; however, the estimates are computed from numerically approximated likelihood function. For instance, R packages, pglm (Croissant, 2017) approximate the likelihood function by the Gauss-Hermite quadratures, while Rchoice (Sarrias, Journal of Statistical Software, 74, 1-31, 2016) use a Monte Carlo integration method for the approximation. As a result, it can be observed that different packages give different results because of different numerical computation methods. In this note, we discuss the pros and cons of numerical methods compared with the exact computation method.