Communications for Statistical Applications and Methods
/
제26권4호
/
pp.371-383
/
2019
Panel data sets have been developed in various areas, and many recent studies have analyzed panel, or longitudinal data sets. Maximum likelihood (ML) may be the most common statistical method for analyzing panel data models; however, the inference based on the ML estimate will have an inflated Type I error because the ML method tends to give a downwardly biased estimate of variance components when the sample size is small. The under estimation could be severe when data is incomplete. This paper proposes the restricted maximum likelihood (REML) method for a random effects panel data model with a censored dependent variable. Note that the likelihood function of the model is complex in that it includes a multidimensional integral. Many authors proposed to use integral approximation methods for the computation of likelihood function; however, it is well known that integral approximation methods are inadequate for high dimensional integrals in practice. This paper introduces to use the moments of truncated multivariate normal random vector for the calculation of multidimensional integral. In addition, a proper asymptotic standard error of REML estimate is given.
Communications for Statistical Applications and Methods
/
제17권3호
/
pp.349-356
/
2010
The ordinary least squares based estimator of the disturbance variance in a regression model for spatial panel data is shown to be asymptotically unbiased and weakly consistent in the context of SAR(1), SMA(1) and SARMA(1,1)-disturbances when there is measurement error in the regressor matrix.
Communications for Statistical Applications and Methods
/
제6권3호
/
pp.667-676
/
1999
We investigate the effects of omission of initial observations in each individuals in the panel data regression model when the disturbances follow a serially correlated one way error components. We show that the first transformed observation can have a relative large hat matrix diagonal component and a large influence on parameter estimates when the correlation coefficient is large in absolute value.
This paper considers a panel data regression model in which the disturbances follow a nested error components with serial correlation. Given this model, this paper derives several Lagrange Multiplier(LM) testis for the presence of serial correlation as well as random individual effects, nested effects, and for existence of serial correlation given random individual and nested effects.
본 논문에서는 이원오차성분을 가지는 패널회귀모형에서 미래시점에 대한 다양한 예측량들을 유도하고, 예측량들의 효율성을 모의실험을 통하여 비교하였다. 모의실험 결과, FGLS추정량을 이용한 예측량들은 참 GLS를 이용한 예측량과 효율성에서 서로 큰차이를 보이지 않았다. 또한 계산상 매우 복잡한 ML과 REML을 이용한 예측량과도 거의 비슷한 효율성을 보여주었다.
Journal of the Korean Data and Information Science Society
/
제25권6호
/
pp.1253-1262
/
2014
회귀나무 (regression tree)는 독립변수로 이루어진 공간을 재귀적으로 분할하고 해당 영역에서 종속변수의 최선의 예측값을 찾고자 하는 비모수적 방법론이다. 회귀나무 모형이 제안된 이래 로지스틱 회귀나무모형이나 분위수 회귀나무모형과 같이 유연하고 다양한 모형적합을 위한 연구가 진행되어 왔다. 최근에 들어서는 Sela와 Simonoff (2012)의 RE-EM 알고리즘, Loh와 Zheng (2013)의 GUIDE 등 패널데이터와 관련하여 진일보한 나무모형 알고리즘도 제안되었다. 본 논문에서는 각 알고리즘을 소개하고 특징을 살펴보는 한편, 실험 데이터를 생성하여 평균제곱오차 (mean squared error)를 바탕으로 예측력을 비교하였다. 분석결과, RE-EM 알고리즘의 예측력이 상대적으로 우수하게 나타났다. 이 알고리즘을 통해 기업경기실사지수 업종별 패널자료를 분석한 결과 최근의 업황에 가장 큰 영향을 미치는 요소는 매출 실적으로 나타났으며 매출 상위 그룹의 경우 비제조업이 제조업에 비해 업황에 대한 판단이 긍정적인 것으로 나타났다.
Purpose: This study aims to analyze the inclusive growth in Central Sulawesi Province, an eastern province of Indonesia, up to the districts/cities level. The inclusive growth is analyzed by using Ramos, Ranieri, and Lammens' index that has three indicators which are employment, poverty, and income inequality. Research design, data, and methodology: This study uses panel data of 13 districts/cities in Central Sulawesi Province from 2015 to 2019. The statistical regression used is the panel regression method to analyze the determinants of inclusive growth there. Results: The study found that the average inclusive growth of districts/cities in Central Sulawesi is increasing from the low-level in 2015 to mid-level in 2019. The panel's data regression using fixed effect model FGLS-SUR found Investment (GFCF), Road Infrastructure, HDI, and Processing Industry have a significant positive effect. Regional minimum wage (RMW) has a significant negative effect. Government Expenditure on Education and Health Function has no significant positive effect on inclusive growth. Conclusions: throughout the study period, gini coefficient and poverty rate is slowly decreasing, while employment to population ratio remains volatile in districts/cities of Central Sulawesi.
In this paper, we consider the panel data regression model in which the disturbances have nested error component. We derive a Lagrange Multiplier(LM) test which is jointly testing for the presence of random individual effects and nested effects under the normality assumption of the disturbances. This test extends the earlier work of Breusch and Pagan(1980) and Baltagi and Li(1991). Further, it is shown that this LM test has the same asymptotic distribution without normality assumption of the disturbances.
본 논문에서는 이원오차성분을 갖는 패널회귀모형에서 모형식별을 위하여 LM 검정통계량을 유도하고 검정통계량의 연산을 위하여 인공회귀방법(Double-Length Artificial Regression, DLR)을 이용한다. 모의 실험 결과, 소표본의 경 우에는 Outer-Product Gradient(OPG)에 근거한 LM 검정통계량은 유위수준이 과대기각하는 경향을 보인 반면 DLR에 근거한 LM 검정통계량은 명목유의수준을 잘 유지하고 검정력도 높게 나타났다.
Communications for Statistical Applications and Methods
/
제26권3호
/
pp.315-323
/
2019
Panel data sets have recently been developed in various areas, and many recent studies have analyzed panel, or longitudinal data sets. Often a dichotomous dependent variable occur in survival analysis, biomedical and epidemiological studies that is analyzed by a generalized linear mixed effects model (GLMM). The most common estimation method for the binary panel data may be the maximum likelihood (ML). Many statistical packages provide ML estimates; however, the estimates are computed from numerically approximated likelihood function. For instance, R packages, pglm (Croissant, 2017) approximate the likelihood function by the Gauss-Hermite quadratures, while Rchoice (Sarrias, Journal of Statistical Software, 74, 1-31, 2016) use a Monte Carlo integration method for the approximation. As a result, it can be observed that different packages give different results because of different numerical computation methods. In this note, we discuss the pros and cons of numerical methods compared with the exact computation method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.