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Asymptotic Distribution of the LM Test Statistic for
the Nested Error Component Regression Model

Byoung Cheol Jung! Myoungshic Jhun' and Seuck Heun Song®

ABSTRACT

In this paper, we consider the panel data regression model in which the
disturbances have nested error component. We derive a Lagrange Multi-
plier (LM) test which is jointly testing for the presence of random individual
effects and nested effects under the normality assumption of the distur-
bances. This test extends the earlier work of Breusch and Pagan(1980) and
Baltagi and Li(1991). Further, it is shown that this LM test has the same
asymptotic distribution without normality assumption of the disturbances.

Keywords: Panel data; Nested error component; LM Test.

1. INTRODUCTION

In the context of error components model with panel data (Baltagi(1995)
and Matyas and Sevestre(1996)), many researchers have provided the LM tests
for testing the existence of the various error components. This paper considers
the panel regression model for a data having a natural nested grouping. For
example, data on firms may be grouped by industry, data on state by region and
data on individuals by profession. In these cases, one can control for unobserved
group and nested subgroup effects using a nested error component model(see
Baltagi(1993)). In this paper, we derive a LM test statistic which jointly tests
the presence of random individual effects and nested effects under the normality
assumption of the disturbances.

Further, it is of some interest to investigate the behavior of this proposed
test statistic under the assumption of non-normal disturbances, since Caroll and
Ruppert(1981) and Koenker(1981) found that the asymptotic distribution of LM
test statistics for heteroscedasticity under the normality assumption is different
from that under the assumption of non-normal disturbances. The second purpose
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of this paper is to investigate the asymptotic property of the LM test statistic for
the nested error components model with non-normal disturbances.

The outline of this paper is as follow. In section 2, we introduce the panel
data regression model with nested error component. In section 3, we first derive a
LM test which jointly tests the presence of random individual effects and nested
effects under the normality assumption of the disturbances. Next, regardless of
normality assumptions of the disturbances, it will be shown that the proposed
test has a same asymptotic distribution of the LM test statistic evaluated at the
normality assumption. Section 4 gives a conclusion.

2. THE MODEL

We consider the following panel regression model
yijt E.’L‘fijtﬁ—i-uz‘jt, 1= 1,"' ,]\4-7 j = 1,"' ,N and t = 1,---,T, (2.1)

where y;;; be an observation on a dependent variable for the jth nested subgroup
within the ith group for the #th time period. z;;; denotes of & nonstochastic
regressor vector. 3 is a k x 1 unknown coefficient parameter vector. The distur-
bances term u;;; in (2.1) are assumed that

Uit = ps +Vij + &5, 1 =1, M, 7=1,---,Nand t=1,--- T, (2.2)

where p; denote ith group specific effects which are assumed to be i.i.d. (0, aﬁ),
vy; denote the nested effects within the ith group which are #.2.d. (0,02) and £;5
are the remainder disturbances which are also assumed to be 7.i.d. (0,02). The
14i’s, V;;'s and g;;;’s are mutually independent. The model (2.1) can be rewritten
in matrix notation as

y=XpG+u, (2.3)

where y and v are a MNT x 1 and X is a MNT x k of rank k. The equation
(2.2) is in vector form :

v =In@IN®ir)p+ (I ® In @ i) + &, (2.4)

where p' = (p1,-- -, pum), V' = (V11,0 v, - L vMN), € = (1, EMNT), N
and ir are vectors of ones of dimension N and 7', respectively. Ips and Iy are
identity matrices of dimension M and N, and ® denotes the Kronecker product.
The disturbance covariance matrix E(uu') can be written as

Q =0y ®JIN®Jr) +ot(In @ In® Jr) + o2(In @ In® Ir),  (2.5)
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where Jy = inély and Jr = ipil, are matrices of ones of dimension N and T

To construct the log-likelihood function, we replace Jy by NJw, Jr by TJr,
Iy by Ex +Jy and Iy by Er+ Jr, where Ex = Iy — Jy and Ep = I — Jr, and
collect terms with the same matrices (Wansbeek and Kapteyn(1983)), we get the
spectral decomposition of Q.

Q=02Q1 + 03Q2 + 03 Qs, (2:6)

where 0% = Tol + o2, 03 = NTO’ +To2 + 02, and @, = (Ins ® Iy @ Ep),
Q2= (Iny ® Ex ® Jr) and Q3 = (IM ® Jy ® Jr). It is easy to show that o2, o3
and o3 are the distinct characteristic roots of Q with multiplicity M N (T — 1),
M(N —1) and M, respectively, and each @;, i = 1,2, 3, is symmetric idempotent
matrix. Moreover, the Qs are pairwise orthogonal and sum to the identity
matrix. Using the advantage of the spectral decomposition of €2, we get

Q7 = (02)7IQ 4+ (6D)71Qa + (03) Qs (2.7)

and

0] = ()M T ()M (M. (2.8)

Therefore, under the normality assumption of the disturbances, the log-likelihood
function of (2.3) is given by

M(N - 1)

(ﬂ,a ,o02,02) = Const. — % log o5 — 5 log o
mw log o2 — %U'Q*lu. (2.9)
3. LM TEST

Engle(1984) and Godfrey(1989) demonstrated the wide applicability of La-
grange Multiplier(LM) test for various model specifications in econometrics and
statistics. The LM test is much simpler to compute than the likelihood ratio test,
since the LM approach is based on the estimation of the model under the null
hypothesis. In our model, the null hypothesis is

0:0, =0, =0, 3.1
Hy:ol=0.=0 3

and the alternative Hj is that at least one component is greater than zero.
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Theorem 3.1. The LM test statistic for the hypothesis (3.1) is given by

MN NT -1

LM=—"—_(A*-24B B? 3.2
2(N_l)( 71 B), (3.2)
"'-II J Jr)i A’I I Jr)u
whereA::u(M®A’/]X® T)u—]_szu(M®AI:}Y;® T)u—l, andﬂstLS
U U U U
residuals.

Proof: Letf = (03, 02,02). Then the information matrix will be block diagonal
between @ and 3 parameters, and the part of information matrix corresponding to
B and the part of partial derivatives with respect to 5 will be ignored in computing
the LM test statistic. In order to construct the LM test statistic for the hypothesis
(3.1), we need D(0) = (8L/88) and information matrix J(§) = E[-82L/8658)
evaluated at the restricted MLE 4.

Following Hemmerle and Hartley(1973), we obtain

8L/ 36, = —%tr[ﬂ_l(aﬁ/&%)] + %[u'Q_l(BQ/BOT)Q_lu] (3.3)
and L 1 1 90 . 69
_ _ 1 —1 08 08

5| 89,.395] z”[g 26, 605]’ (34)

for r,s = 1,2,3 (see Harville(1977)). Under the null hypothesis, the £ reduces
to JEIMNT and the restricted MLE of 3 is BOLS, so that i =y — Xﬁow are the
OLS residuals and 52 = @'/M NT. Using the equations (3.3) and (3.4), we can
obtain the partial derivatives and information matrix, evaluated at the restricted
MLE, given by

MNT @(In ® Jy ® Jr)i

~ 252 ( W 2
D) = MNT(a'(IM ® Iy ® Jr)u 1) (3.5)
262 WU
0

and
NT

T 1
J@) = T T 1
1 1 1
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with
5 r-1  —(T-1 0
j—l___ 25 ‘-(T—l) NT —1 —T(N—l) (3 f))
MN(N - 1)T?*(T -1 . (3.
Using (3.5) and (3.6), the LM test statistic is given by
Y (6 5 MN NT -1
LM = ! —-1 — 2 _ Bz .
DOy 707 P6) = 57— (47248 + T ) 6D
i -~ ~f —~
where A = — Un ®,i{N ® )i _ land B =2 Uyt ®AJ;JX ® Jr)i _ 1. O
U U N

These terms can be easily computed from the OLS residuals. Under the null
hypothesis the LM test statistic in (3.7) is asymptotically distributed as y2.

The LM test statistic in (3.2) depends on the normality assumption of distur-
bances u. However, even if « does not have a normal distribution, the LM test
statistic in (3.2) still has a same asymptotic distribution of the LM test statistic
evaluated at the normality assumption of u. Using 52 = @'ti/MNT, the LM test
statistic in (3.2) is revised as

LM =

( (IM®JN®JT a’ ) (u (In® Iy ®Jr)u ﬁ>2

V2L,52
(IM@JN@JT) -0t ?L(IM®IN®JT) '

I ( 52 )( 52 ) (38)
where Iy = MN(N — 1)T? and Ly = MN(N - 1)(T — 1)T?/(NT - 1). To
show an asymptotic property of LM test statistic in (3.8) for the case of non-
normal disturbances, we adopt the following classical device. Consider a following

sequence of local alternative parameters (oi, ¢?) converge to the null parameters

(0,0) at the rate of 1/y/L1 and 1//L,.

02 =0+40,/vVI1 >0, o2=0+6,/vVI3>0 (3.9)
and
M—»oo,]%’lgloo,T—)oo 6“ = 61’ M—)oo,]\lflgloo,T—mo 6U - 62. (310)

The 4, and ¢, are parameters when sample sizes are M, N and T, and these
parameters change as M, N and T increases, and the 4, and d2 are nonnegative

X X) = Q, where

fixed parameters. Finally, we assume lim (
M—o0,N—=oo0,T—e0

@ is a k x k positive definite matrix.
Under these assumptions, we have the following theorem :

MNT
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Theorem 3.2. As M,N,T — oo, the LM test statistic in (3.8) is asymptotically
distributed as non-central x3 with non-centrality parameters (6% +63) /202 for the
non-normal disturbances. If both 81 and d2 are zero (under Hy), LM test statistic
is asymptotically distributed as central x2.

In order to prove Theorem 3.2, we provide some lemmas which will be used
later.

Lemma 3.1. The following two equations hold.

L Iy ® Iy ® Jr)i - ih 1 MET
(3) V2L10? V2Lio? ; 2 1;&25 ijt= ks

NT(NT - 1) % )

+ uy +op(1), (3.11)
V2L 02 =
LTI ®Iy®Jr) i — @0 MNZE

T(T - 1)

2
§j +ap(l). (3.12)
\/2L203 P

Proof: First, we will show the holding of part (z) in Lemma 3.1. The left-hand
side(LHS) of the equation (3.11) is given by

(I ® Iy ® Jr)i — 0’4 1 M XL NT
5 ]\;L aT = 5L102 (Z [(Zzuiﬁ)z - EZ%D
£ i=1 j=1t=1 j=1t=1
1 M N T
= __2—27(2 Z Zﬁi]tﬁzk:s) (3 13)

Since @t = uijt — 2ijt(X'X) 1 X'u, equation (3.13) can be rewritten as

\/2—[,“02(2 Z Zu’bjtuzks)

i=1 j#k or t;és

= \/TUQZ Z Zuzjtuzks

& =1 J;ék or t;és

\/TUQZ E Z“wthks (X' X)Xy

€ 1=1 j#k or t#s
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1 M N T
- S S el (XX) T X
2L10§ 1=1 j#k or t#£s ?
N T

T A 50 2 2 T X'X) T X ualy (X' X) T X . (3.14)
L 19¢ =1 J#k or t#s

In the following we will show that the first term of the right-hand side(RHS) in
(3.14) can be the RHS in (3.11), and the other terms of the RHS in (3.14) are
op(1).

(4) First, substituting (2.2) into the the first term of the RHS in (3.14), we get

2L1 ZZ Z Zu1jtu1ks

9¢ =1 j#k or t;és

- \/2T02Z Z Z/"Z"“sz+51yt)(ﬂz+yzk+5'aks)

€ 4= 1];£k: or t#s

1 1 M N
= NT(NT — 1)ui + T(NT — 1)u;v;
V2Lio? ; ) 2L102 ; FZI ’

—

(NT -1

_|_
&l
- 5
f"lqM
M= B
M=
NS
T
gﬂ
T
b2
a
M=
=
P
N
=
e

M N M N T
e S S s — L3 S T
2L103 i=1 jsk 2L o'g i=1 j#£k t=1
1 M

_I_

M
JE i=1 7%k or t#s

[\

g

f"'lq(\)

T
M=
M "3

a
I
—
o
1l
ey

Except the first term and last term, the other terms in (3.15) converge to 0 as
sample sizes get larger. For example, we consider the term 7—1—1;2- P Z;-\;l

T(T — 1) . Since v;; are independent for all 7 and j, (Lz/ vij)? are i.i.d. with

finite mean. Therefore, using the Khinchine’s theorem, 3,3, (Lé/ Yy )2/ MN

converge in probability to lim+/Leo?2 = limd, = &5. Since, the fourth term in

(3.15) can be written as _1\!_\1}2_7;_*__(%2 > ;L 5/41/1]) /MN and lim %%2 =0,
the fourth term of (3.15) is 0p(1). Also, the last term in (3.15) is devided as the

following :

M

\/'2T10-22 Z ZEUt‘ElkS = \/2TO’2 ZZZEZJtEZ_]S

€ 1=1j#k or t#s € =1 7 t#s

—
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1 X 1 X
+M—ZZZEi'tE'kt+—-—ZZZEi'f;Eik . (316)
2 Y] 7 5
2ho? i S V2Lio? = itk t#s

Let pyj = 3445 €ijt€ijs/ /2021 (1 — 1), then p;; are i.i.d with mean 0 and variance
1. Hence, 33,5 ;pij/VMN converges in distribution to the standard normal
distribution by CLT. Since, the first term of RHS in (3.16) becomes ‘/U\?—;ll)T
(X; 2 pig/vVMN), which is 0,(1). By using the similar method, the second term
of RHS in (3.16) is also 0,(1). Therefore, the first term of RHS in (3.14) becomes
to RHS in (3.11).

(i) Next, consider the second term of RHS in (3.14) which can be expressed by

(% i iuijtwiks/agw/2L1MNT) (X'X/MNT) ™ (X'u/VMNT). (3.17)

=1 j£k or t#s

The second term in (3.17) converge to Q! by assumption, and the third term
converges in distribution to a k-variate normal distribution with mean 0 and
covariance matrix 02Q. To show this, we can rewrite the third term in (3.17) as

s 1 N S -
NT YT W;;Xt:m%ﬁm;;;wmm

1
JAINT 2 2 D it (3.18)
z J

The first term of RHS in (3.18) converges in distribution to a k-variate nor-
mal distribution with mean 0 and covariance matrix 02@ (see, Greene(1997)),
and the second and third term in (3.18) are op(1). To show this, the sec-
ond term in (3.18) can be written as %Ei fi..(L}/zlui)/vM, where #; =

i g 2t @it/ NT. Assuming that the relgression model (2.1) has a constant
term, the condition Im(X'X/MNT) = lim3 >3 mpw);, = Q implies that
each element of Z; is O(1). As Li/4,ui are 4i...d with mean 0 and variance 4,
> :Z',-__(L%/ 4,u,-) /V'M converges in distribution to k-variate normal distribution.
Hence, —W 201205 2ot Tijepi 18 op(1). Using the similar method, it is easy to
show that the third term of RHS in (3.18) is o,(1). Next, substituting (2.2) into
the first term in (3.17), and using the similar method, we obtain that the first
term in (3.17) is op(1). Therefore, the second and third term of RHS in (3.14) is

op(1).
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(ii4) Finally, we can show that the fourth term of RHS in (3.14) is also 0,(1). To
show this, we rewrite it as

NT -1 X'X -1,
[\/2MN(N - 1)T2ag] [(MNT) X'u/MNT]

M
[;; gmijta’;ks/MNT(NT_l)][(“]g‘%) X'u/VMNT|(3.19)

The second and fourth term in (3.19) converge in distribution to a k-variate

normal distribution, and the third term in (3.19) converges to a & X k constant

matrix, and the first term in (3.19) converges to zero. Therefore, the fourth term
of RHS in (3.14) is also o,(1).

Using the similar technique, we can prove that the results of part (z1) hold.

O

Lemma 3.2. The following convergence results hold

Iy ® Jn @ Jr)u —u'a q

(1) V2L 02 N(51/\/§JS, 1),
(i) TIM @ f}\;%@jf) YL 4 g N8 VEOR1), (3.20)

where d denotes convergence in distribution. Furthermore, Z) and Zo are inde-
pendent.

D T Pt and w,;, = _;Zt s 2 ° then p; and wj;
V2NT(N=-1)(T-1)o? R 2T(T—1)o? b B
are 1.i.d with mean 0 and variance 1, respectively. Therefore, the CLT implies

that both —= S2M. p; and -+ M, SN wi; converge in distribution to the
VM -1 vVMN F=1 1]
standard normal distribution. Since,

Proof: Define p; =

=il E]'\;ek Zﬁés €4jtEiks N(N -1)T(T - 1)
J\/leag o Z Z/‘/_( MN(N — 1)T? )

Yol il Tk €t MNT(T - 1)(NT - 1)
and V2L0? Z Z wig [V M ( NV = 1)T2(T -1 ):
'f\il Zj\;&k th['#.s Eith’LkS Zz 1 Z] 1 Zt#s Eijt€ijs

\/2L10§ V2L6o 0’2

tribution to the standard normal distribution, respectlvely.

the term

converge in dis-
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Next, we can show the asymptotic behavior of the second term of RHS in
(3.11) and (3.12). Since,

NT(NT —1) « 5 MNT(NT —1) 14 \2
= 2L103 ZUi - \/iLlCT? Z(L /JJi) /M
and MNT
14y,
«/2L_Uz ZZ C V2Lye? chﬂ ZZ Sl

2 2

: P ehine? NT(NT-1) <~ 2,1 T(T-1)
using the Khinchine’s theorem Aol o 12 and TE=4 olaal e Z] #; converge in

probability to §;/v/202 and d2/+v/202, respectively. Therefore, equation (3.11)
converges in distribution to Z; which is distributed as N(§;/v/202,1), and equa-
tion (3.12) also converges in distribution to Z which is also distributed as
N (83/+/202,1). Furthermore, the 3, p;/vM and 5, > wij/ vVMN are uncorre-
lated, Z; and Z5 are independent. O

Lemma 3.3. The following convergence results hold

] o~

(i) (ﬂ'(IM®JN®JT)ﬁ—’ZE’ﬁ)2+( Ty @Iy® Jr)u AU)Z

V2Li0? V2L502
*ﬂx (2, (67 + 63)/202), (3.21)
.. 'E’(IM®JN®JT)’L,I: ’ZZ IM®I]\/®IT)U—UU P
(i) L—l( 2 )( . ) B0, (3.22)
(i4i) 2 = Wa/MNT B (3.23)

Proof:

(¢) From Lemma 3.2, we can show

T'a d,
)" 4~ (L6720

( (I ® Iy ® Jr)t —
V2L 02

and

g =~

TiN2 4
)5 ¥y~ x3(1,83/207).

( @Iy ®In® Jr)tu —
2Lo072

Furthermore, from Lemma 3.2, Y] and Y5 are independent. Therefore, we obtain
the part (¢) of Lemma 3.3.

(41) Following Lemma 3.1, the equation (3.22) can be written as
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(a'(IM ® %UL;T)Q - fa’a) (fi’(IM ® Ij]:%a?)ﬁ - ﬂ'ﬁ) (QE) (3.24)

Using the result of lemma 3.1 and lemma 3.2, the first term and the second term
in (3.24) converge in distribution to Z; and Z,, respectively, and the third term
in (3.24) converges to zero. Therefore, the entire term in (3.24) is o0,(1).

(434) Since, 52 = ¥, DD I 'Tjijt/MNT, by the similar method of (3.14) we
can rewrite 52 as

62 = D3 3wl /MNT - 2% 5 S wijzipn(X' X)X 'u/MNT
i j ot i oj ot
+ YN Y (i (X X) T X W) /MNT. (3.25)
i 3 t

Using the similar technique to prove Lemma 3.1, it can be easily shown that the
second and the third term of RHS in (3.25) are o,(1). Also, substituting (2.2)
into the first term of RHS in (3.25), and applying Khinchine’s theorem, we can
show that it converges in probability to o2. Therefore, we obtain the result of
part (i) of Lemma 3.3. ]

Proof of Theorem 3.2: In order to prove Theorem 3.2, we revise the LM test
statistic in (3.2) as

54
UE

2L0? V2Ly0?

LLI(QI(IM ® JNU(? Jr)i — im) (a'(IM ® Iy ® Jr)i — W) (%)(3.26)

M - {(ii’(IM®JN®JT)ﬁ—@Z’ﬂ)2+(fa’(IM®IN®.]T)ﬁ—~z’z’a)2}(ag)

2
gz

Combining the results from Lemma 3.1 to Lemma 3.3, the LM test statistic in
(3.26) is asymptotically distributed as noncentral X% with noncentrality parame-
ter (02 +063)/20%. If 6y = 0 and d; = 0 (under Hp) then the LM statistic in (3.26)
is asymptotically distributed as central X%- O

4. CONCLUSION

In this paper, we derived the LM test which is jointly testing for the presence
of random individual effects and nested effects. Further, even if the disturbances
do not have a normal distribution, it is shown that the proposed test has a
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same asymptotic distribution of the LM test statistic evaluated at the normality
agsumption. Regardless of the normality assumption of the disturbances, the
resulting test statistics should be proven useful for nested error component model
specifications.
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