• Title/Summary/Keyword: Panavia F 2.0

Search Result 52, Processing Time 0.032 seconds

The effect of resin cements and primer on retentive force of zirconia copings bonded to zirconia abutments with insufficient retention

  • Kim, Seung-Mi;Yoon, Ji-Young;Lee, Myung-Hyun;Oh, Nam-Sik
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.198-203
    • /
    • 2013
  • PURPOSE. The purpose of this study was to investigate the effect of resin cements and primer on the retentive force of zirconia copings bonded to zirconia abutments with insufficient retention. MATERIALS AND METHODS. Zirconia blocks (Lava, 3M ESPE, St. Paul, MN, USA) were obtained and forty sets of zirconia abutments and copings were fabricated using CAD/CAM technology. They were grouped into 4 categories as follows, depending on the types of resin cements used, and whether the primer is applied or not:Panavia F2.0 (P), Panavia F2.0 using Primer (PRIME Plus, Bisco Inc, Schaumburg, IL, USA) (PZ), Superbond C&B (S), and Superbond C&B using Primer (SZ). For each of the groups, the cementation was conducted. The specimens were kept in sterilized water ($37^{\circ}C$) for 24 hours. Retentive forces were tested and measured, and a statistical analysis was carried out. The nature of failure was recorded. RESULTS. The means and standard deviations of retentive force in Newton for each group were $265.15{\pm}35.04$ N (P), $318.21{\pm}22.24$ N (PZ), $445.13{\pm}78.54$ N (S) and $508.21{\pm}79.48$ N (SZ). Superbond C&B groups (S & SZ) showed significantly higher retentive force than Panavia F2.0 groups (P & PZ). In Panavia F2.0 groups, the use of primer was found to contribute to the increase of retentive force. On the other hand, in Superbond C&B groups, the use of primer did not influence the retention forces. Adhesive failure was observed in all groups. CONCLUSION. This study suggests that cementation of the zirconia abutments and zirconia copings with Superbond C&B have a higher retentive force than Panavia F2.0. When using Panavia F2.0, the use of primer increases the retentive force.

Effects of immediate and delayed light activation on the polymerization shrinkage-strain of dual-cure resin cements (즉시 광중합과 지연 광중합이 이원 중합 레진시멘트의 중합 수축량에 미치는 영향)

  • Lee, So-Yeoun;Kim, Sung-Hun;Ha, Seung-Ryong;Choi, Yu-Sung;Kim, Hee-Kyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.3
    • /
    • pp.195-201
    • /
    • 2014
  • Purpose: This study was designed to compare the amount of polymerization shrinkage of dual-cure resin cements according to different polymerization modes and to determine the effect of light activation on the degree of polymerization. Materials and methods: Four kinds of dual-cure resin cements were investigated: Smartcem 2, Panavia F 2.0, Clearfil SA Luting and Zirconite. Each material was tested in three different polymerization modes: self-polymerization only, immediate light polymerization and 5 minutes-delayed light polymerization. The time-dependent polymerization shrinkage-strain was evaluated for 30 minutes by Bonded-disk method at $37^{\circ}C$. Five recordings of each material with three different modes were taken. Data were analyzed using one-way ANOVA and multiple comparison Scheffe′test (${\alpha}$=.05). Results: All materials, except Panavia F 2.0, exhibited the highest polymerization shrinkage-strain through delayed light-activated polymerization. No significant difference between light activation modes was found with Panavia F 2.0. All materials exhibited more than 90% of polymerization rate in the immediate or delayed light activated group within 10 minutes. Conclusion: As a clinical implication of this study, the application of delayed light activation mode to dual-cure resin cements is advantageous in terms of degree of polymerization.

Effect of cement type on the color attributes of a zirconia ceramic

  • Tabatabaian, Farhad;Khodaei, Maliheh Habib;Namdari, Mahshid;Mahshid, Minoo
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.6
    • /
    • pp.449-456
    • /
    • 2016
  • PURPOSE. This in vitro study evaluated the effects of four different cements on the color attributes of a zirconia ceramic. MATERIALS AND METHODS. 40 zirconia ceramic disk specimens (0.5 mm thickness, 10 mm diameter, 0.1 mm cement space) were fabricated by a computer-aided design and computer-aided manufacturing system. The specimens were divided into 4 groups of 10 specimens and cemented to composite substrates using four different cements including: Glass Ionomer, Panavia F2.0, Zinc Phosphate, and TempBond. The $L^*$, $a^*$, and $b^*$ color attributes of the specimens were measured before and after cementation by a spectrophotometer. Additionally, ${\Delta}E$ values were measured to determine color changes for the groups and then compared with the perceptional threshold of ${\Delta}E=3.3$. Repeated Measures ANOVA, Tukey Post Hoc, Bonferroni, One-way ANOVA, and One-sample t-test tests were used to analyze the data. All tests were carried out at the 0.05 level of significance. RESULTS. Statistically significant differences were detected in the ${\Delta}E$ values for Zinc Phosphate (P<.0001) and TempBond (P<.0001) groups. However, there were no statistically significant differences in this respect for Glass Ionomer (P=.99) and Panavia F2.0 (P=1) groups. The means and standard deviations of the ${\Delta}E$ values for Glass Ionomer, Panavia F2.0, Zinc Phosphate, and Tempbond groups were $2.11{\pm}0.66$, $0.94{\pm}0.39$, $5.77{\pm}0.83$, and $7.50{\pm}1.16$ Unit, respectively. CONCLUSION. Within the limitations of this study, it was concluded that Zinc Phosphate and Tempbond cements affected the color attributes of the tested zirconia ceramic beyond the perceptional threshold. However, Glass Ionomer and Panavia F2.0 cements created acceptable color changes.

Tooth surface treatment strategies for adhesive cementation

  • Rohr, Nadja;Fischer, Jens
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.2
    • /
    • pp.85-92
    • /
    • 2017
  • PURPOSE. The aim of this study was to evaluate the effect of tooth surface pre-treatment steps on shear bond strength, which is essential for understanding the adhesive cementation process. MATERIALS AND METHODS. Shear bond strengths of different cements with various tooth surface treatments (none, etching, priming, or etching and priming) on enamel and dentin of human teeth were measured using the Swiss shear test design. Three adhesives (Permaflo DC, Panavia F 2.0, and Panavia V5) and one self-adhesive cement (Panavia SA plus) were included in this study. The interface of the cement and the tooth surface with the different pre-treatments was analyzed using SEM. pH values of the cements and primers were measured. RESULTS. The highest bond strength values for all cements were achieved with etching and primer on enamel ($25.6{\pm}5.3-32.3{\pm}10.4MPa$). On dentin, etching and priming produced the highest bond strength values for all cements ($8.6{\pm}2.9-11.7{\pm}3.5MPa$) except for Panavia V5, which achieved significantly higher bond strengths when pre-treated with primer only ($15.3{\pm}4.1MPa$). Shear bond strength values were correlated with the micro-retentive surface topography of enamel and the tag length on dentin except for Panavia V5, which revealed the highest bond strength with primer application only without etching, resulting in short but sturdy tags. CONCLUSION. The highest bond strength can be achieved for Panavia F 2.0, Permaflo DC, and Panavia SA plus when the tooth substrate is previously etched and the respective primer is applied. The new cement Panavia V5 displayed low technique-sensitivity and attained significantly higher adhesion of all tested cements to dentin when only primer was applied.

EFFECT OF SURFACE TREATMENT METHODS ON THE SHEAR BOND STRENGTH OF RESIN CEMENT TO ZIRCONIA CERAMIC

  • Lee, Ho-Jeong;Ryu, Jae-Jun;Shin, Sang-Wan;Sub, Kyu-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.743-752
    • /
    • 2007
  • Statement of problem. The aims of the study were to evaluate the effect of current surface conditioning methods on the bond strength of a resin composite luting cement bonded to ceramic surfaces and to identify the optimum cement type. Material and methods. The sixty zirconia ceramic specimens(10 per group) with EVEREST milling machine and 60 tooth block were made. The zirconia ceramic surface was divided into two groups according to surface treatment: (1) airborne abrasion with $110{\mu}m$ aluminum oxide particles; (2) Rocatec system, tribochemical silica coating. The zirconia ceramic specimens were cemented to tooth block using resin cements. The tested resin cements were Rely X ARC, Panavia F and Superbond C&B. Each specimen was mount in a jig of the universal testing machine for shear strength. The results were subjected to 2-way ANOVA and Post hoc tests was performed using Tukey, Scheffe, and Bonferroni test. Results. The mean value of shear bond strength(MPa) were as follows: $$RelyXARC(+Al_2O_3),5.35{\pm}1.69$$; $$RelyXARC(+Rocatec),8.50{\pm}2.13$$; $$PanaviaF(+Al_2O_3),9.58{\pm}1.13$$; $$PanaviaF(+Rocatec),12.98{\pm}1.71$$; $$SuperbondC&B(+Al_2O_3)8.27{\pm}2.04$$; $$SuperbondC&B(+Rocatec),14.46{\pm}2.39$$. There was a significant increase in the shear bond strength when the ceramic surface was subjected to the tribochemical treatment(Rocatec 3M) in all cement groups(P<0.05). Bonding strengths of cements applied to samples treated with $Al_2O_3$ were compared; Rely X ARC showed the lowest values, whereas Panavia F cement showed higher value than that of Superbond C&B group with no statistical significance. When the bond strength of cements with of Rocatec treatment was compared, Rely X ARC showed lowest values. Overall, it was apparent that tribochemical treated Super-Bond possessed higher mean bond strength (14.46MPa; P<0.05) than that of Panavia F cement group with no significance. Conclusions. Silica coating followed silanization(Rocatec treatment) increase the bond strength between resin cement and zirconia ceramic. Panavia F containing phosphate monomer and Superbond C&B comprised of 4-META tend to bond chemically with zirconia ceramic, thus demonstrating higher bond strength compared to BisGMA resin cement. Superbond C&B has shown to have highest value of bonding strength to zirconia ceramic after Rocatec treatment compared to other cement.

Retention of CAD/CAM Metal Copings Cemented on Short Titanium Abutments with Different Cements (짧은 티타늄 지대주에 합착된 CAD/CAM 금속 코핑의 시멘트 종류에 따른 유지력 비교)

  • Kim, Hyo-Jung;Song, Eun-Young;Yoon, Ji-Young;Lee, Si-Ho;Lee, Yong-Keun;Oh, Nam-Sik
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.2
    • /
    • pp.119-126
    • /
    • 2012
  • State of problem: Cement-retained implant-supported prostheses are routinely used in dentistry. The use of high strength cements has become more popular with the increasing confidence in the stability of the implant-abutment screw connection and the high survival rates of osseointegrated implants. No clinical data on retention of metal copings using CAD/CAM. To evaluate retention of metal copings using CAD/CAM system bonded to short titanium abutment with four different cements and compare retentive strength of metal copings with sandblasting or without sandblasting before cementation. Forty titanium abutment blocks were fabricated and divided into 4 groups of 10 samples each. Forty metal copings with occlusal hole to allow for retention testing were fabricated using CAD/CAM technology. The four cements were Fujicem(Fuji, Japan), Maxcem Elite(Kerr, USA), Panavia F2.0(Kurarary, Japan) and Superbond C&B(Sunmedical, Japan). The copings were cemented on the titanium abutment according to manufacture's recommendation. All samples were stored for 24h at 37oC in 100% humidity and tested for retention using universal testing machine(Instron) at a crosshead speed of 1.0mm/min. Force at retentive failure was recorded in Newton. The mode of failure was also recorded. Means and standard deviations of loads at failure were analyzed using ANOVA and Paired t-test. Statistical significance was set at P<0.05. Panavia F2.0 provided significantly higher retentive strength than Fujicem, Maxcem Elite(P<0.05). Sandblasting significantly increased bond strength(P<0.05). The mode of failure was cement remaining principally on metal copings. Within the limitation of this study, Panavia F2.0 showed significantly stronger retentive strength than Fujicem, Maxcem Elite(p<0.05). The Ranking order of the cements to retain the copings was Panavia F2.0, Fujicem = Maxcem Elite. Sandblasting significantly increased bond strength(P<0.05). The retentive strength of metal copings on implant abutment were influenced by surface roughness and type of cements.

Effect of water storage on the fracture toughness of dental resin cement used for zirconia restoration (수분이 지르코니아 수복물 전용 레진시멘트의 파괴인성에 미치는 영향에 관한 연구)

  • Goo, Bon-Wook;Kim, Sung-Hun;Lee, Jai-Bong;Han, Jung-Suk;Yeo, In-Sung;Ha, Seung-Ryong;Kim, Hee-Kyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.4
    • /
    • pp.312-316
    • /
    • 2014
  • Purpose: The aim of this study was to compare the fracture toughness of currently available resin cements for zirconia restorations and evaluate the effect of water storage on fracture toughness of those resin cements. Materials and methods: Single-edge notched specimens ($3mm{\times}6mm{\times}25mm$) were prepared from three currently available dual cure resin cements for zirconia restorations (Panavia F 2.0, Clearfil SA luting and Zirconite). Each resin cement was divided into four groups: immersed in distilled water at $37^{\circ}C$ for 1 (Control group), 30, 90, or 180 days (n=5). Specimens were loaded in three point bending at a cross-head speed of 0.1 mm/s. The maximum load at specimen failure was recorded and the fracture toughness ($K_{IC}$) was calculated. Data were analyzed using one-way ANOVA and multiple comparison $Scheff{\acute{e}}$ test (${\alpha}$=.05). Results: In control group, the mean $K_{IC}$ was $3.41{\pm}0.64MN{\cdot}m^{-1.5}$ for Panavia F, 2.0, $3.07{\pm}0.41MN{\cdot}m^{-1.5}$ for Zirconite, $2.58{\pm}0.30MN{\cdot}m^{-1.5}$ for Clearfil SA luting respectively, but statistical analysis revealed no significant difference between them. Although a gradual decrease of $K_{IC}$ in Panavia F 2.0 and gradual increases of KIC in Clearfil SA luting and Zirconite were observed with storage time, there were no significant differences between immersion time for each cement. Conclusion: The resin cements for zirconia restorations exhibit much higher $K_{IC}$ values than conventional resin cements. The fracture toughness of resin cement for zirconia restoration would not be affected by water storage.

INFLUENCE OF TOOTH SURFACE ROUGHNESS AND TYPE OF CEMENT ON RETENTION OF COMPLETE CAST CROWNS (치아표면 거칠기와 시멘트 종류가 전부주조관의 유지력에 미치는 영향)

  • Kim, Kil-Su;Song, Chang-Yong;Ahn, Seung-Geun;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.4
    • /
    • pp.465-473
    • /
    • 1999
  • Bond strength of luting cements to dentin is a critical consideration for success of complete cast crowns. This study was performed to evaluate the relationship between surface characteristics of teeth prepared for complete cast crowns and retention of cemented restorations. Eighty artificial crowns were cast for standardized complete crown tooth preparations accomplished with the use of a special device on recently extracted human teeth. Coarse diamond(#102R, Shofu) and superfine finishing diamond(#SF102R, Shofu) burs of similar shape were used. Crowns in each group were randomly subdivided into few subgroups of 10 for luting cements selected for this study: zinc phosphate cement (FLECK' S), polycarboxylate cement (Poly-F), rein-forced glass ionomer cement (Fuji PLUS). and adhesive resin cement (Panavia 21). Retention was evaluated by measuring the tensile load required to dislodge the artificial crown from tooth preparations with an Instron testing machine, and analysed by one-way ANOVA and Student's t-test. The obtained results were as follows ; 1. When tooth preparation was done with coarse diamond bur, retentive force was diminished in order of Panavia 21 Fuji PLUS, FLECK'S, and Poly-F. Retentive forces showed the significant difference between Fuji PLUS group and FLECK'S group(p<0.001). 2. When tooth preparation was done with superfine diamond bur, retentive force was diminished in order of Fuji PLUS, Panavia 21, FLECK'S, and Poly-F. Retentive forces showed the significant difference between Panavia 21 group and FLECK'S group(p<0.001). 3. Retentive force in coarse tooth surfaces was significantly higher than that in superfine tooth surface with all luting cements(p<0.001), and cement residues were almost retained with-in the cast crown in all groups.

  • PDF

The effect of resin cement type and cleaning method on the shear bond strength of resin cements for recementing restorations

  • Koodaryan, Roodabeh;Hafezeqoran, Ali;Maleki, Amin Khakpour
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.2
    • /
    • pp.110-117
    • /
    • 2017
  • PURPOSE. This laboratory study assessed the effect of different dentin cleaning procedures on shear bond strength of resin cements for recementing prosthesis. MATERIALS AND METHODS. A $4{\times}4$ flat surface was prepared on the labial surface of 52 maxillary central incisors. Metal frames ($4{\times}4{\times}1.5mm$) were cast with nickel-chromium alloy. All specimens were randomly divided into 2 groups to be cemented with either Panavia F2.0 (P) or RelyX Ultimate (U) cement. The initial shear bond strength was recorded by Universal Testing Machine at a crosshead speed of 0.5 mm/min. Debonded specimens were randomly allocated into 2 subgroups (n = 13) according to the dentin cleaning procedures for recementation. The residual cement on bonded dentin surfaces was eliminated with either pumice slurry (p) or tungsten carbide bur (c). The restorations were rebonded with the same cement and were subjected to shear test. Data failed the normality test (P < .05), thus were analyzed with Mann Whitney U-test, Wilcoxon signed rank test, and two-way ANOVA after logarithmic transformation (${\alpha}=.05$). RESULTS. The initial shear bond strength of group P was significantly higher than group U (P = .001). Pc and Uc groups presented higher bond strength after recementation compared to the initial bond strength. However, it was significant only in Pc group (P = .034). CONCLUSION. The specimens recemented with Panavia F2.0 provided higher bond strength than RelyX Ultimate cement. Moreover, a tungsten carbide bur was a more efficient method in removing the residual resin cement and increased the bond strength of Panavia F2.0 cement after recementation.

Comparison of shear bond strength according to various surface treatment methods of zirconia and resin cement types (지르코니아의 다양한 표면처리 방법과 레진시멘트 종류에 따른 전단결합강도 비교)

  • Bae, Ji-Hyeon;Bae, Gang-Ho;Park, Taeseok;Huh, Jung-Bo;Choi, Jae-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.2
    • /
    • pp.153-163
    • /
    • 2021
  • Purpose: The aim of this study was to evaluate the effects of four surface treatment methods to improve zirconia roughness and three types of resin cement on the shear bond strength (SBS). Materials and methods: A total of 120 zirconia blocks were randomly divided into four surface treatments: non-treatment (Control), airborne-particle abrasion (APA) with 50 ㎛ Al2O3 (APA50), APA with 125 ㎛ Al2O3 (APA125), and ZrO2 slurry (ZA). Three resin cements (Panavia F 2.0, Superbond C&B, and Variolink N) were applied to the surface-treated zirconia specimens. All specimens were subjected to SBS testing using a universal testing machine. The surface of the representative specimens of each group was observed by scanning electron microscope (SEM). SBS data were analyzed with oneway ANOVA, two-way ANOVA test and post-hoc Tukey HSD Test (α=.05). Results: In the surface treatment method, APA125, APA50, ZA, and Control showed high shear bond strength in order, but there was no significant difference between APA125 and APA50 (P>.05). Also, ZA showed significantly higher shear bond strength than Control (P<.05). In the resin cement type, Panavia F 2.0, Superbond C&B, and Variolink N showed significantly higher shear bond strength in order (P<.05). In SEM images, the zirconia surfaces of the APA50 and APA125 showed quite rough and irregular shapes, and the zirconia surface of the ZA was observed small irregular porosity and rough surfaces. Conclusion: APA and ZrO2 slurry were enhanced the surface roughness of zirconia, and Panavia F 2.0 containing MDP showed the highest shear bond strength with zirconia.