DOI QR코드

DOI QR Code

Comparison of shear bond strength according to various surface treatment methods of zirconia and resin cement types

지르코니아의 다양한 표면처리 방법과 레진시멘트 종류에 따른 전단결합강도 비교

  • Bae, Ji-Hyeon (Research and Development Institute, PNUADD Co., Ltd.) ;
  • Bae, Gang-Ho (Research and Development Institute, PNUADD Co., Ltd.) ;
  • Park, Taeseok (DMAX Co. Ltd.) ;
  • Huh, Jung-Bo (Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Sciences, School of Dentistry, Pusan National University) ;
  • Choi, Jae-Won (Research and Development Institute, PNUADD Co., Ltd.)
  • Received : 2020.08.27
  • Accepted : 2021.01.05
  • Published : 2021.04.30

Abstract

Purpose: The aim of this study was to evaluate the effects of four surface treatment methods to improve zirconia roughness and three types of resin cement on the shear bond strength (SBS). Materials and methods: A total of 120 zirconia blocks were randomly divided into four surface treatments: non-treatment (Control), airborne-particle abrasion (APA) with 50 ㎛ Al2O3 (APA50), APA with 125 ㎛ Al2O3 (APA125), and ZrO2 slurry (ZA). Three resin cements (Panavia F 2.0, Superbond C&B, and Variolink N) were applied to the surface-treated zirconia specimens. All specimens were subjected to SBS testing using a universal testing machine. The surface of the representative specimens of each group was observed by scanning electron microscope (SEM). SBS data were analyzed with oneway ANOVA, two-way ANOVA test and post-hoc Tukey HSD Test (α=.05). Results: In the surface treatment method, APA125, APA50, ZA, and Control showed high shear bond strength in order, but there was no significant difference between APA125 and APA50 (P>.05). Also, ZA showed significantly higher shear bond strength than Control (P<.05). In the resin cement type, Panavia F 2.0, Superbond C&B, and Variolink N showed significantly higher shear bond strength in order (P<.05). In SEM images, the zirconia surfaces of the APA50 and APA125 showed quite rough and irregular shapes, and the zirconia surface of the ZA was observed small irregular porosity and rough surfaces. Conclusion: APA and ZrO2 slurry were enhanced the surface roughness of zirconia, and Panavia F 2.0 containing MDP showed the highest shear bond strength with zirconia.

목적: 본 연구는 지르코니아의 거칠기 증가를 위한 4가지 표면처리 방법과 3종의 레진시멘트가 전단결합강도에 미치는 영향을 알아보고자 하였다. 재료 및 방법: 총 120개의 지르코니아 시편을 표면처리 방법에 따라 4개의 군으로 나누었다: 대조군, 아무 처리를 하지 않은 군; APA50군, 50 ㎛ 크기의 Al2O3로 Airborne-particle abrasion (APA) 처리를 시행한 군; APA125군, 125 ㎛ 크기의 Al2O3로 APA 처리를 시행한 군; ZA군, ZrO2 slurry를 적용한 군. 각 군에 3종의 레진시멘트(Panavia F 2.0, Superbond C&B, Variolink N)를 접착하고, 만능시험기를 이용하여 전단결합강도를 측정하였다. 주사전자현미경을 이용해 각 군의 대표 표본의 표면을 관찰하였다. 표면처리 방법과 레진시멘트 종류에 따른 상호작용이 존재하는지 알아보기 위하여 Two-way ANOVA를 실시하였고, 각 군 간의 통계적 차이를 알아보기 위해 One-way ANOVA를 시행하였다. 사후검정으로 Tukey HSD test를 실시하였다(α = .05). 결과: 표면처리에 따른 전단결합강도 비교에서, APA125군, APA50군, ZA군, 대조군 순으로 높은 값을 보였고, APA처리를 시행한 군(APA50군, APA125군) 간에는 통계적으로 유의한 차이가 없었다(P > .05). 또한, ZA군은 대조군보다 유의성 있게 높은 값을 보였다(P < .05). 레진시멘트 종류에 따라서는 Panavia F 2.0, Superbond C&B, Variolink N 순으로 높은 전단결합강도를 보였다(P < .05). APA50군과 APA125군에서는 거칠고 불규칙한 표면이 관찰되었고, ZA군에서는 작고 불규칙한 다공성과 거친 표면이 관찰되었다. 결론: 본 연구의 한계내에서, APA 처리와 ZrO2 slurry를 적용했을 때 지르코니아의 표면 거칠기가 증가됨을 확인할 수 있었고, MDP를 함유한 Panavia F 2.0가 지르코니아와의 가장 높은 전단결합강도를 보였다.

Keywords

References

  1. Blatz MB, Sadan A, Kern M. Resin-ceramic bonding: a review of the literature. J Prosthet Dent 2003;89:268-74. https://doi.org/10.1067/mpr.2003.50
  2. Blatz MB, Chiche G, Holst S, Sadan A. Influence of surface treatment and simulated aging on bond strengths of luting agents to zirconia. Quintessence Int 2007;38:745-53.
  3. Luthardt RG, Holzhuter M, Sandkuhl O, Herold V, Schnapp JD, Kuhlisch E, Walter M. Reliability and properties of ground Y-TZP-zirconia ceramics. J Dent Res 2002;81:487-91. https://doi.org/10.1177/154405910208100711
  4. Phark JH, Duarte S Jr, Blatz M, Sadan A. An in vitro evaluation of the long-term resin bond to a new densely sintered high-purity zirconium-oxide ceramic surface. J Prosthet Dent 2009;101:29-38. https://doi.org/10.1016/S0022-3913(08)60286-3
  5. Luthardt R, Weber A, Rudolph H, Schone C, Quaas S, Walter M. Design and production of dental prosthetic restorations: basic research on dental CAD/ CAM technology. Int J Comput Dent 2002;5:165-76.
  6. Kakehashi Y, Luthy H, Naef R, Wohlwend A, Scharer P. A new all-ceramic post and core system: clinical, technical, and in vitro results. Int J Periodont Restor Dent 1998;18:586-93.
  7. Meyenberg KH, Luthy H, Scharer P. Zirconia posts: a new all-ceramic concept for nonvital abutment teeth. J Esthet Dent 1995;7:73-80. https://doi.org/10.1111/j.1708-8240.1995.tb00565.x
  8. Yildirim M, Fischer H, Marx R, Edelhoff D. In vivo fracture resistance of implant-supported all-ceramic restorations. J Prosthet Dent 2003;90:325-31. https://doi.org/10.1016/S0022-3913(03)00514-6
  9. Glauser R, Sailer I, Wohlwend A, Studer S, Schibli M, Scharer P. Experimental zirconia abutments for implant-supported single-tooth restorations in esthetically demanding regions: 4-year results of a prospective clinical study. Int J Prosthodont 2004;17:285-90.
  10. Bindl A, Luthy H, Mormann WH. Thin-wall ceramic CAD/CAM crown copings: strength and fracture pattern. J Oral Rehabil 2006;33:520-8. https://doi.org/10.1111/j.1365-2842.2005.01588.x
  11. Palacios RP, Johnson GH, Phillips KM, Raigrodski AJ. Retention of zirconium oxide ceramic crowns with three types of cement. J Prosthet Dent 2006;96:104-14. https://doi.org/10.1016/j.prosdent.2006.06.001
  12. Ozcan M, Nijhuis H, Valandro LF. Effect of various surface conditioning methods on the adhesion of dual-cure resin cement with MDP functional monomer to zirconia after thermal aging. Dent Mater J 2008;27:99-104. https://doi.org/10.4012/dmj.27.99
  13. Aboushelib MN, Matinlinna JP, Salameh Z, Ounsi H. Innovations in bonding to zirconia-based materials: Part I. Dent Mater 2008;24:1268-72. https://doi.org/10.1016/j.dental.2008.02.010
  14. Ernst CP, Cohnen U, Stender E, Willershausen B. In vitro retentive strength of zirconium oxide ceramic crowns using different luting agents. J Prosthet Dent 2005;93:551-8. https://doi.org/10.1016/j.prosdent.2005.04.011
  15. Stefani A, Brito RB Jr, Kina S, Andrade OS, Ambrosano GM, Carvalho AA, Giannini M. Bond strength of resin cements to zirconia ceramic using adhesive primers. J Prosthodont 2016;25:380-5. https://doi.org/10.1111/jopr.12334
  16. Kern M, Wegner SM. Bonding to zirconia ceramic: adhesion methods and their durability. Dent Mater 1998;14:64-71. https://doi.org/10.1016/S0109-5641(98)00011-6
  17. Goto S, Churnjitapirom P, Miyagawa Y, Ogura H. Effect of additive metals, Sn, Ga, and In in Ag-Pd-AuCu alloys on initial bond strength of 4-META adhesive cement to these alloys. Dent Mater J 2008;27:678-86. https://doi.org/10.4012/dmj.27.678
  18. Fonseca RG, de Almeida JG, Haneda IG, Adabo GL. Effect of metal primers on bond strength of resin cements to base metals. J Prosthet Dent 2009;101:262-8. https://doi.org/10.1016/S0022-3913(09)60050-0
  19. Aboushelib MN, Feilzer AJ, Kleverlaan CJ, Salameh Z. Partial-retainer design considerations for zirconia restorations. Quintessence Int 2010;41:41-8.
  20. Akgungor G, Sen D, Aydin M. Influence of different surface treatments on the short-term bond strength and durability between a zirconia post and a composite resin core material. J Prosthet Dent 2008;99:388-99. https://doi.org/10.1016/S0022-3913(08)60088-8
  21. Matinlinna JP, Heikkinen T, Ozcan M, Lassila LV, Vallittu PK. Evaluation of resin adhesion to zirconia ceramic using some organosilanes. Dent Mater 2006;22:824-31. https://doi.org/10.1016/j.dental.2005.11.035
  22. Kim CH, Jeon YC, Jeong CM, Lim JS. Effect of surface treatments of zirconia ceramic on the bond strength of resin cements. J Korean Acad Prosthodont 2004;42:386-96.
  23. Zhang Y, Lawn BR, Rekow ED, Thompson VP. Effect of sandblasting on the long-term performance of dental ceramics. J Biomed Mater Res B Appl Biomater 2004;71:381-6.
  24. Sato H, Yamashita D, Ban S. Structural change of zirconia surfaces by sandblasting and heat treatment. Dent Mater 2006;25:338-43.
  25. Karakoca S, Yilmaz H. Influence of surface treatments on surface roughness, phase transformation, and biaxial flexural strength of Y-TZP ceramics. J Biomed Mater Res B Appl Biomater 2009;91:930-7. https://doi.org/10.1002/jbm.b.31477
  26. Jo YB, Ahn JJ, Lee SH, Park T, Huh JB. The effect of ZrO2 slurry application to the pre-sintered zirconia surface on bonding strength. Implantology 2020;24:76-82. https://doi.org/10.32542/implantology.202008
  27. Lee JH, Kim HS, Pae A, Woo YH. Influence of sandblasting and primer on shear bond strength of resin cement to zirconia. J Korean Acad Prosthodont 2011;49:49-56. https://doi.org/10.4047/jkap.2011.49.1.49
  28. Jun IK, Koh YH, Song JH, Lee SH, Kim HE. Improved compressive strength of reticulated porous zirconia using carbon coated polymeric sponge as novel template. Mater Lett 2006;60;2507-10. https://doi.org/10.1016/j.matlet.2006.01.031
  29. Fengqiu T, Xiaoxian H, Yufeng Z, Jingkun G. Effect of dispersants on surface chemical properties of nano-zirconia suspensions. Ceram Int 2000;26;93-7. https://doi.org/10.1016/S0272-8842(99)00024-3
  30. Luthy H, Loeffel O, Hammerle CH. Effect of thermocycling on bond strength of luting cements to zirconia ceramic. Dent Mater 2006;22:195-200. https://doi.org/10.1016/j.dental.2005.04.016