DOI QR코드

DOI QR Code

Effect of water storage on the fracture toughness of dental resin cement used for zirconia restoration

수분이 지르코니아 수복물 전용 레진시멘트의 파괴인성에 미치는 영향에 관한 연구

  • Goo, Bon-Wook (School of Dentistry, Seoul National University) ;
  • Kim, Sung-Hun (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Lee, Jai-Bong (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Han, Jung-Suk (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Yeo, In-Sung (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Ha, Seung-Ryong (Department of Dentistry, School of Medicine, Ajou University) ;
  • Kim, Hee-Kyung (Department of Prosthodontics, Veterans Health Service Medical Center)
  • 구본욱 (서울대학교 치의학대학원) ;
  • 김성훈 (서울대학교 치의학대학원 치과보철학교실) ;
  • 이재봉 (서울대학교 치의학대학원 치과보철학교실) ;
  • 한중석 (서울대학교 치의학대학원 치과보철학교실) ;
  • 여인성 (서울대학교 치의학대학원 치과보철학교실) ;
  • 하승룡 (아주대학교 의과대학 치의학과) ;
  • 김희경 (중앙보훈병원 치과병원 치과보철과)
  • Received : 2014.09.29
  • Accepted : 2014.10.15
  • Published : 2014.10.31

Abstract

Purpose: The aim of this study was to compare the fracture toughness of currently available resin cements for zirconia restorations and evaluate the effect of water storage on fracture toughness of those resin cements. Materials and methods: Single-edge notched specimens ($3mm{\times}6mm{\times}25mm$) were prepared from three currently available dual cure resin cements for zirconia restorations (Panavia F 2.0, Clearfil SA luting and Zirconite). Each resin cement was divided into four groups: immersed in distilled water at $37^{\circ}C$ for 1 (Control group), 30, 90, or 180 days (n=5). Specimens were loaded in three point bending at a cross-head speed of 0.1 mm/s. The maximum load at specimen failure was recorded and the fracture toughness ($K_{IC}$) was calculated. Data were analyzed using one-way ANOVA and multiple comparison $Scheff{\acute{e}}$ test (${\alpha}$=.05). Results: In control group, the mean $K_{IC}$ was $3.41{\pm}0.64MN{\cdot}m^{-1.5}$ for Panavia F, 2.0, $3.07{\pm}0.41MN{\cdot}m^{-1.5}$ for Zirconite, $2.58{\pm}0.30MN{\cdot}m^{-1.5}$ for Clearfil SA luting respectively, but statistical analysis revealed no significant difference between them. Although a gradual decrease of $K_{IC}$ in Panavia F 2.0 and gradual increases of KIC in Clearfil SA luting and Zirconite were observed with storage time, there were no significant differences between immersion time for each cement. Conclusion: The resin cements for zirconia restorations exhibit much higher $K_{IC}$ values than conventional resin cements. The fracture toughness of resin cement for zirconia restoration would not be affected by water storage.

목적: 본 연구에서는 지르코니아 수복물의 접착에 사용되는 레진 시멘트의 파괴인성을 측정하고 각 레진 시멘트의 다양한 수중 보관 기간이 파괴 인성에 미치는 영향에 관하여 알아보고자 하였다. 재료 및 방법: 세가지 종류의 레진 시멘트(Panavia F2.0, Clearfil SA luting, Zirconite)를 사용하여 single edge notched 형태의 시편($3mm{\times}6mm{\times}25mm$)을 제작하였다. 각 시편은 $37^{\circ}C$ 증류수에서 1일 (대조군), 30일, 90일, 180일 동안 보관하였다 (n=5). 만능시험기를 이용하여 0.1 mm/s 속도로 삼점굽힘 시험을 시행하고, 파절 시의 최대하중으로 파괴인성($K_{IC}$)을 계산하였다. 측정값은 일원분산분석과 다중분석을 위한 $Scheff{\acute{e}}$ test를 사용하였고, 유의수준은 0.05로 하였다. 결과: 대조군에서 Panavia F2.0가 $3.41{\pm}0.64MN{\cdot}m^{-1.5}$로 가장 높은 $K_{IC}$를 보였으며 Zirconite가 $3.07{\pm}0.41MN{\cdot}m^{-1.5}$, Clearfil SA luting이 $2.58{\pm}0.30MN{\cdot}m^{-1.5}$으로 가장 낮은 $K_{IC}$를 보였으나, 재료간에 유의성 있는 차이는 없었다. 수중보관 기간이 증가함에 따라 Panavia F2.0의 값은 감소였고, Clearfil SA luting과 Zirconite는 증가하였으나, 통계적으로 유의한 차이를 보이지 않았다. 결론: 지르코니아 수복물 전용 레진 시멘트의 파괴인성은 다른 일반 시멘트에 비해 대체로 높으며, 이러한 파괴인성은 수중 보관에 영향을 받지 않는다.

Keywords

References

  1. Silva NR, Bonfante EA, Zavanelli RA, Thompson VP, Ferencz JL, Coelho PG. Reliability of metalloceramic and zirconia-based ceramic crowns. J Dent Res 2010;89:1051-6. https://doi.org/10.1177/0022034510375826
  2. Palacios RP, Johnson GH, Phillips KM, Raigrodski AJ. Retention of zirconium oxide ceramic crowns with three types of cement. J Prosthet Dent 2006;96:104-14. https://doi.org/10.1016/j.prosdent.2006.06.001
  3. Vult von Steyern P, Carlson P, Nilner K. All-ceramic fixed partial dentures designed according to the DC-Zirkon technique. A 2-year clinical study. J Oral Rehabil 2005;32:180-7. https://doi.org/10.1111/j.1365-2842.2004.01437.x
  4. Komine F, Blatz MB, Matsumura H. Current status of zirconia-based fixed restorations. J Oral Sci 2010;52:531-9. https://doi.org/10.2334/josnusd.52.531
  5. Martins LM, Lorenzoni FC, Melo AO, Silva LM, Oliveira JL, Oliveira PC, Bonfante G. Internal fit of two all-ceramic systems and metal-ceramic crowns. J Appl Oral Sci 2012;20:235-40. https://doi.org/10.1590/S1678-77572012000200019
  6. Knobloch LA, Kerby RE, Seghi R, Berlin JS, Lee JS. Fracture toughness of resin-based luting cements. J Prosthet Dent 2000;83:204-9. https://doi.org/10.1016/S0022-3913(00)80013-X
  7. Mueller HJ. Fracture toughness and fractography of dental cements, lining, build-up, and filling materials. Scanning Microsc 1990;4:297-307.
  8. BS 5447:1997. Methods of test for plane strain fracture toughness ($K_{IC}$) of metallic materials. 1997.
  9. White SN, Yu Z. Physical properties of fixed prosthodontic, resin composite luting agents. Int J Prosthodont 1993;6:384-9.
  10. Lloyd CH, Iannetta RV. The fracture toughness of dental composites. I. The development of strength and fracture toughness. J Oral Rehabil 1982;9:55-66. https://doi.org/10.1111/j.1365-2842.1982.tb00535.x
  11. Ilie N, Hickel R, Valceanu AS, Huth KC. Fracture toughness of dental restorative materials. Clin Oral Investig 2012;16:489-98. https://doi.org/10.1007/s00784-011-0525-z
  12. Cook WD, Moopnar M. Influence of chemical structure on the fracture behaviour of dimethacrylate composite resins. Biomaterials 1990;11:272-6. https://doi.org/10.1016/0142-9612(90)90009-F
  13. Yuksel E, Zaimoglu A. Influence of marginal fit and cement types on microleakage of all-ceramic crown systems. Braz Oral Res 2011;25:261-6. https://doi.org/10.1590/S1806-83242011000300012
  14. Azar MR, Bagheri R, Burrow MF. Effect of storage media and time on the fracture toughness of resin-based luting cements. Aust Dent J 2012;57:349-54. https://doi.org/10.1111/j.1834-7819.2012.01703.x
  15. Miettinen VM, Narva KK, Vallittu PK. Water sorption, solubility and effect of post-curing of glass fibre reinforced polymers. Biomaterials 1999;20:1187-94. https://doi.org/10.1016/S0142-9612(99)00003-4
  16. Ferracane JL, Berge HX. Fracture toughness of experimental dental composites aged in ethanol. J Dent Res 1995;74:1418-23. https://doi.org/10.1177/00220345950740071501