• Title/Summary/Keyword: Packing Structure

Search Result 218, Processing Time 0.027 seconds

Crystal Structure of SAV0927 and Its Functional Implications

  • Jeong, Soyeon;Kim, Hyo Jung;Ha, Nam-Chul;Kwon, Ae-Ran
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.500-505
    • /
    • 2019
  • Staphylococcus aureus is a round-shaped, gram-positive bacterium that can cause numerous infectious diseases ranging from mild infections such as skin infections and food poisoning to life-threatening infections such as sepsis, endocarditis and toxic shock syndrome. Various antibiotic-resistant strains of S. aureus have frequently emerged, threatening human lives significantly. Despite much research on the genetics of S. aureus, many of its genes remain unknown functionally and structurally. To counteract its toxins and to prevent the antibiotic resistance of S. aureus, our understanding of S. aureus should be increased at the proteomic scale. SAV0927 was first sequenced in an antibiotic resistant S. aureus strain. The gene is a conserved hypothetical protein, and its homologues appear to be restricted to Firmicutes. In this study, we determined the crystal structure of SAV0927 at $2.5{\AA}$ resolution. The protein was primarily dimeric both in solution and in the crystals. The asymmetric unit contained five dimers that are stacked linearly with ${\sim}80^{\circ}$ rotation by each dimer, and these interactions further continued in the crystal packing, resulting in a long linear polymer. The crystal structures, together with the network analysis, provide functional implications for the SAV0927-mediated protein network.

Study on the Fire Cause Analysis for Explosives Waste by Thermal Analysis Experiment (열분석 실험에 의한 화약류 폐기물의 화재원인분석에 관한 연구)

  • Koh, Jae-Sun
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.1
    • /
    • pp.89-100
    • /
    • 2018
  • when the explosive wastes to be treated as designated wastes are brought into the wastes treatment plant by mistake and lead to an explosion in the wastes disposal process, many people and property damage are involved. Waste should be treated properly. As mentioned in this paper, ignition reac- tion tests of ignitable re-burning of explosives packing material waste (solid butadiene) confirmed that ignition was easily occurred, and that even small ignition sources were easily ignited and burned quickly and explosively. In particular, when explosives are loaded into incineration wastes in large quantities and mixed with organic compound wastes, such as fire and explosion accidents caused by explosives packing materials at waste disposal sites, flammable and oxidative gases are generated due to mutual oxidation and pyrolysis It is confirmed that there is a possibility that ignition sources such as spark ignite and instantaneously lead to explosion. It is hoped that this study will be a small reference for on - site detection in the field of fire, and it is expected that the fire - fighting agency will be recognized as a fire investigation agency and will contribute to the improvement of the credibility.

Evaluation of the Flux According to Membrane Distillation Module Structure and Operating Conditions Using PVDF Hollow Fiber Membrane (PVDF 중공사 분리막을 이용한 MD 모듈 구조 및 운전 조건에 따른 플럭스 영향 평가)

  • Min, Ji Hee;Lee, Seul ki;Gil, Nam Seok;Park, Min Soo;Kim, Jin Ho
    • Membrane Journal
    • /
    • v.28 no.2
    • /
    • pp.83-89
    • /
    • 2018
  • Hydrophobic porous PVDF hollow fiber membranes for Membrane Distillation (MD) were fabricated by a combination of thermally induced phase separation (TIPS) and stretching. The purpose of this study is to investigate the shape and operating conditions of the module and the effect of piping size on parallel connection. In the optimization experiment of the vacuum membrane distillation module, the flux decreased as the packing density and length of the membrane in the module increased. When the module was connected vertically, it was confirmed that the nearest to the inlet of the vacuum port was the highest flux. In selecting the size of the header pipe of the module, it was confirmed that the maximum flux is shown when the inner diameter area of the hollow fiber membrane and the inner diameter area of the header pipe are the same. Also, it is necessary to find the optimal linear velocity because the higher the linear velocity in the module, the higher the flux, but the pressure acting on the module also increases proportionally.

Balancing assembly line in an electronics company

  • 박경철;강석훈;박성수;김완희
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1993.10a
    • /
    • pp.12-19
    • /
    • 1993
  • In general, the line balancing problem is defined as of finding an assignment of the given jobs to the workstations under the precedence constraints given to the set of jobs. Usually, the objective is either minimizing the cycle time under the given number of workstations or minimizing the number of workstations under the given cycle time. In this paper, we present a new type of an assembly line balancing problem which occurs in an electronics company manufacturing home appliances. The main difference of the problem compared to the general line balancing problem lies in the structure of the precedence given to the set of jobs. In the problem, the set of jobs is partitioned into two disjoint subjects. One is called the set of fixed jobs and the other, the set of floating jobs. The fixed jobs should be processed in the linear order and some pair of the jobs should not be assigned to the same workstations. Whereas, to each floating job, a set of ranges is given. The range is given in terms of two fixed jobs and it means that the floating job can be processed after the first job is processed and before the second job is processed. There can be more than one range associated to a floating job. We present a procedure to find an approximate solution to the problem. The procedure consists of two major parts. One is to find the assignment of the floating jobs under the given (feasible) assignment of the fixed jobs. The problem can be viewed as a constrained bin packing problem. The other is to find the assignment of the whole jobs under the given linear precedence on the set of the floating jobs. First problem is NP-hard and we devise a heuristic procedure to the problem based on the transportation problem and matching problem. The second problem can be solved in polynomial time by the shortest path method. The algorithm works in iterative manner. One step is composed of two phases. In the first phase, we solve the constrained bin packing problem. In the second phase, the shortest path problem is solved using the phase 1 result. The result of the phase 2 is used as an input to the phase 1 problem at the next step. We test the proposed algorithm on the set of real data found in the washing machine assembly line.

  • PDF

Effect of RTA Temperature on the Structural and Optical Properties of HfO2 Thin Films (급속 열처리 온도가 HfO2 박막의 구조적 및 광학적 특성에 미치는 효과)

  • Chung, Yeun-Gun;Joung, Yang-Hee;Kang, Seong-Jun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.497-504
    • /
    • 2019
  • We fabricated $HfO_2$ thin films using RF magnetron sputtering method, and investigated structural and optical properties of $HfO_2$ thin films with RTA temperatures in $N_2$ ambient. $HfO_2$ thin films exhibited polycrystalline structure regardless of annealing process, FWHM of M (-111) showed reduction trend. The surface roughness showed the smallest of 3.454 nm at a annealing temperature of $600^{\circ}C$ in result of AFM. All $HfO_2$ thin films showed the transmittance of about 80% in visible light range. By fitting the refractive index from the transmittance and reflectance to the Sellmeir dispersion relation, we can predict the refractive index of the $HfO_2$ thin film according to the wavelength. The $HfO_2$ thin film annealed at $600^{\circ}C$ exhibited a high refractive index of 2.0223 (${\lambda}=632nm$) and an excellent packing factor of 0.963.

Fabrication of Poly(methyl methacrylate) Beads Monolayer Using Rod-coater and Effects of Solvents, Surfactants and Plasma Treatment on Monolayer Structure (Rod 코팅을 이용한 Poly(methyl methacrylate) 비드의 단일층 형성 및 단일층 구조에 미치는 용매, 계면활성제, 플라즈마 처리의 영향)

  • Kim, Da Hye;Ham, Dong Seok;Lee, Jae-Heung;Huh, Kang Moo;Cho, Seong-Keun
    • Journal of Adhesion and Interface
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Fabrication of monolayer is important method for enhancing physical and chemical characteristics such as light shielding and antireflection while maintaining thin film properties. In previous studies, monolayers were fabricated by various methods on small substrates, but processes were complicated and difficult to form monolayers with large area. We used rod coating equipment with a small amount of coating liquid to form a HCP (hexagonal closed packing) coating of PMMA beads on PET(poly(ethylene terephthalate)) substrate with $20cm{\times}20cm$ size. We observed that changes in morphologies of monolayers by using the solvents with different boiling points and vapor pressures, by adapting surfactants on particles and by applying plasma treatment on substrates. The coverage was increased by 20% by optimizing the coating conditions including meniscus of beads, control of the attraction - repulsion forces and surface energy. This result can potentially be applied to optical films and sensors because it is possible to make a uniform and large-scale monolayer in a simple and rapid manner when it is compared to the methods in previous studies.

Optimization of preform mold injection molding process for hemispheric plastic structure fabrication (반구형 플라스틱 구조체 성형을 위한 프리폼 몰드 사출성형공정 최적화)

  • Park, Jeong-Yeon;Ko, Young-Bae;Kim, Dong-Earn;Ha, Seok-Jae;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.30-36
    • /
    • 2019
  • Traditional cell culture(2-dimensional) is the method that provide a nutrient and environment on a flat surface to cultivate cells into a single layer. Since the cell characteristics of 2D culture method is different from the characteristics of the cells cultured in the body, attempts to cultivate the cells in an environment similar to the body environment are actively proceeding in the industry, academy, and research institutes. In this study, we will develop a technology to fabricate micro-structures capable of culturing cells on surfaces with various curvatures, surface shapes, and characteristics. In order to fabricate the hemispheric plastic structure(thickness $50{\mu}m$), plastic preform mold (hereinafter as "preform mold") corresponding to the hemisphere was first prepared by injection molding in order to fabricate a two - layer structure to be combined with a flat plastic film. Then, thermoplastic polymer dissolved in an organic solvent was solidified on a preform mold. As a preliminary study, we proposed injection molding conditions that can minimize X/Y/Z axis deflection value. The effects of the following conditions on the preform mold were analyzed through injection molding CAE, [(1) coolant inlet temperature, (2) injection time, (3) packing pressure, (4) volume-pressure (V/P). As a result, the injection molding process conditions (cooling water inlet temperature, injection time, holding pressure condition (V / P conversion point and holding pressure size)) which can minimize the deformation amount of the preform mold were derived through CAE without applying the experimental design method. Also, the derived injection molding process conditions were applied during actual injection molding and the degree of deformation of the formed preform mold was compared with the analysis results. It is expected that plastic film having various shapes in addition to hemispherical shape using the preform mold produced through this study will be useful for the molding preform molding technology and cast molding technology.

Geophysical Implications for Configurational Entropy and Cube Counting Fractal Dimension of Porous Networks of Geological Medium: Insights from Random Packing Simulations (지질매체 공극 구조에 대한 구성 엔트로피와 상자집계 프랙탈 차원의 지구물리학적 의미 및 응용: 무작위 패킹 시뮬레이션 연구)

  • Lee, Bum-Han;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.367-375
    • /
    • 2010
  • Understanding the interactions between earth materials and fluids is essential for studying the diverse geological processes in the Earth's surface and interior. In order to better understand the interactions between earth materials and fluids, we explore the effect of specific surface area and porosity on structural parameters of pore structures. We obtained 3D pore structures, using random packing simulations of porous media composed of single sized spheres with varying the particle size and porosity, and then we analyzed configurational entropy for 2D cross sections of porous media and cube counting fractal dimension for 3D porous networks. The results of the configurational entropy analysis show that the entropy length decreases from 0.8 to 0.2 with increasing specific surface area from 2.4 to $8.3mm^2/mm^3$, and the maximum configurational entropy increases from 0.94 to 0.99 with increasing porosity from 0.33 to 0.46. On the basis of the strong correlation between the liquid volume fraction (i.e., porosity) and configurational entropy, we suggest that elastic properties and viscosity of mantle melts can be expressed using configurational entropy. The results of the cube counting fractal dimension analysis show that cube counting fractal dimension increases with increasing porosity at constant specific surface area, and increases from 2.65 to 2.98 with increasing specific surface area from 2.4 to $8.3mm^2/mm^3$. On the basis of the strong correlation among cube counting fractal dimension, specific surface area, and porosity, we suggest that seismic wave attenuation and structural disorder in fluid-rock-melt composites can be described using cube counting fractal dimension.

Process Characteristics of SiOx and SiOxNy Films on a Gas Barrier Layer using Facing Target Sputtering (FTS) System (FTS 장치를 이용한 가스 차단막용 SiOx 및 SiOxNy 박막의 공정특성)

  • Son, Jin-Woon;Park, Yong-Jin;Sohn, Sun-Young;Kim, Hwa-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1028-1032
    • /
    • 2009
  • In this study, the influences of silicon-based gas barrier films fabricated by using a facing target sputtering(FTS) system on the gas permeability for flexible displays have been investigated. Under these optimum conditions on the $SiO_x$ film with oxygen concentration($O_2/Ar+O_2$) of 3.3% and the $SiO_xN_y$ film with nitrogen concentration($N_2/Ar+O_2+N_2$) of 30% deposited by the FTS system, it was found that the films were grown about 4 times higher deposition rate than that of the conventional sputtering system and showed high transmittance about 85% in the visible light range. Particularly, the polyethylene naphthalate(PEN) substrates with the $SiO_x$ and/or $SiO_xN_y$ films showed the enhanced properties of decreased water vapor transmission rate (WVTR) over $10^{-1}\;g/m^2{\cdot}day$ compared with the PEN substrate without any gas barrier films, which was due to high packing density in the Si-based films with high plasma density by FTS process and/or the denser chemical structure of Si-N bond in the $SiO_xN_y$ film.

The Permeation Properties of $O_{2}\;and\;N_{2}$ for BPSf/TMSPSf Blend Membrane (BPSf/TMSSf 블렌드막을 통한 산소와 질소의 투과특성)

  • Kim Hyunjoon;Hong Suk-In
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.1
    • /
    • pp.29-36
    • /
    • 2001
  • The permeation properties of $O_2\;and\;N_2$ were measured for bromobisphenol A polysulfone(BPSf), bisphenol A trimethylsilylated polysulfone(TMSPSf) and their blend membrane to investigate the structure-properties relationships. BPSf shows relatively high permselectivity. It can be explained that the strong polarity of bromine in BPSf increases chain packing ability. In this case the distance of polymer chains is reduced by increasing of interchain interaction by induced dipole. TMSPSf shows relatively high permeability. The higher value of permeability coefficients for TMSPSf is due to the substitution of very bulky trimethylsilyl groups. The replacement of phenyl hydrogens of bisphenol A polysulfone(PSf) with trimethylsilyl groups results in higher fractional free volume(FFV). In this work, taking into account the complimentary features of BPSf and TMSPSf, BPSf/TMSPSf blend was prepared and the compatibility in mixing are examined. The BPSf/TMSPSf blend shows higher permeability than commercial PSf, with minimum loss of selectivity. The miscibility of the BPSf/TMSPSf blend is confirmed by the single glass transition temperature.

  • PDF