• Title/Summary/Keyword: Packaging machine

Search Result 131, Processing Time 0.024 seconds

Development of Oxo-biodegradable Transparent Bio Films Using Biomass and Biodegradable Catalyst (바이오매스 및 생분해 촉매제를 이용한 산화생분해 투명 바이오 필름 개발)

  • You, Young-Sun;Kim, Young-Tae;Park, Dae-Sung;Choi, Sung-Wook
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.133-139
    • /
    • 2017
  • Bio-based plastics containing the biomass content higher than 25 wt% have been considered as environment-friendly materials due to their effects on the reduction in the $CO_2$ emission and petroleum consumption as well as biodegradability after use. In this study, poly vinyl chloride, plant-derived plasticizers, by adding a biodegradable catalyst was observed a change in the biodegradability and physical properties. To produce the oxidative decomposition transparent bio film, which is broken down in the initial percent elongation and physical properties such as tensile strength, it was to test the safety of the product as a food packaging material. Poly vinyl chloride, primary plasticizer, secondary plasticizer, anti fogging agent, the combined stabilizer were mixed in a high speed mixer, then extruded using an extrusion molding machine, after cooling, winding, to produce a oxidative decomposition transparent bio film and the control film, with a thickness of $12{\mu}m$ through winder role. Mechanical properties tensile strength, elongation, and the maximum load elongation and biodegradation test. Transparent bio film produced by biodegradation catalyst is compared with the control film. Tensile strength and elongation of films were found to be no significant difference. Further, as a result of the biodegradation test for 45 days based on the ASTM D6954-04 method, biodegrability of film is 61.4%.

Simulation-based Production Analysis of Food Processing Plant Considering Scenario Expansion (시나리오 확장을 고려한 식품 가공공장의 시뮬레이션 기반 생산량 분석)

  • Yeong-Hyun Lim ;Hak-Jong, Joo ;Tae-Kyung Kim ;Kyung-Min Seo
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.93-108
    • /
    • 2023
  • In manufacturing productivity analysis, understanding the intricate interplay among factors like facility performance, layout design, and workforce allocation within the production line is imperative. This paper introduces a simulation-based methodology tailored to food manufacturing, progressively expanding scenarios to analyze production enhancement. The target system is a food processing plant, encompassing production processes, including warehousing, processing, subdivision, packaging, inspection, loading, and storage. First, we analyze the target system and design a simulation model according to the actual layout arrangement of equipment and workers. Then, we validate the developed model reflecting the real data obtained from the target system, such as the workers' working time and the equipment's processing time. The proposed model aims to identify optimal factor values for productivity gains through incremental scenario comparisons. To this end, three stages of simulation experiments were conducted by extending the equipment and worker models of the subdivision and packaging processes. The simulation experiments have shown that productivity depends on the placement of skilled workers and the performance of the packaging machine. The proposed method in this study will offer combinations of factors for the specific production requirements and support optimal decision-making in the real-world field.

A Study on Automated Multi-Channel Combination System for the Closest Target Weight (목표중량 근사치 자동 설정을 위한 멀티헤드 조합시스템에 관한 연구)

  • Ahn, Yong-Woo;Ban, Kap-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.77-83
    • /
    • 2015
  • This paper is a study of the functions required for the system to quantify the closest target weight by combining several random weights such as chips, snacks, fruits, and vegetables. The multi-head weigher is designed for high-performance applications requiring increased production rates and tight accuracy tolerances. This combination system has 12 heads considered in the form of a rectangular array of $2{\times}6$ or $3{\times}4$. Channel combination can usually occur between 1 and n, and the frequency was the highest with two or three combinations. Experimental result of a combination system for a total target weight was measured at the range from 100g to 500g by increments of 50g, and the average success rate was about 70%. The average elapsed time was about 1.7 seconds, which means it can be used for the packaging of agricultural products with a variety of items.

Survey on the Kitchen Machinery for the Production of Convenient Foods (Dosirak) in Korea (국내도시락 생산업체의 기기류현황 분석)

  • Park, Hyung-Woo;Koh, Ha-Young;Kang, Tong-Sam;Shin, Dong-Hwa
    • Journal of the Korean Society of Food Culture
    • /
    • v.2 no.2
    • /
    • pp.163-167
    • /
    • 1987
  • To determine and improve the holding machinery for the productin of convenient food (Dosirak) making Compnay in Seoul and Kyeongkido, a survey was conducted of 16 relative companys in 1986. The majority of the holding machinery are composed to work table, sink, rice cooker and fryer. It is necessary that the machinery are reinforced like packaging machine, air cleaner, cold and refrigeration room, sanitary arrangements.

  • PDF

A Study of Kinematic Selection and Design of Manipulator Aimed to Specified Task (작업지향형 매니퓰레이터 기구설계기법에 관한 연구)

  • Lee, Hee-Don;Yu, Seung-Nam;Ko, Kwang-Jin;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.939-944
    • /
    • 2007
  • Generally, development of a robot capable of fast movements or high payloads is progressed by the analysis of dynamic characteristics, DOF positioning, actuator selection, structure of links, and so on. This paper highlights the design of a robot manipulator handled by a human for man-machine cooperation. The requirements of the proposed system include its having multi-DOF(Degree of Freedom)and the capacity for a high payload in the condition of its maximum reach. The primary investigation factors are motion range, performance within the motion area, and reliabilityduring the handling of heavy materials. Traditionally, the mechanical design of robots has been viewed as a problem of packaging motors and electronics into a reasonable structure. This process usually transpires with heavy reliance of designerexperience. Not surprisingly, the traditional design process contains no formally defined rules for achieving desirable results, as there is little opportunity for quantitative feedback during the formative stages. This work primarily focuses on the selection of proper joint types and link lengths, considering a specific task type and motion requirements of the heavy material handling.

  • PDF

The Manufacturing of Electromagnetic Shielding Sheet Using the Carbon and Wood Fiber Mixture (탄소와 목재섬유 혼합물을 이용한 전자기파 차폐용 시트의 제조)

  • Kim, Hyoung-Jin;Um, Gi-Jeung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.4 s.117
    • /
    • pp.68-75
    • /
    • 2006
  • Electromagnetic shielding sheet using the carbon and wood fiber mixture was manufactured in an effort to develop an electromagnetic shielding packaging material. Carbon fibers were cut into 5, 10, and 15 mm using the automatic cutting device and blown and dispersed using compression air passed through the fine nozzle. Then carbon fibers were slurried with water (0.1% consistency), and softwood kraft pulp along with cone starch were added. The wet mats were manufactured by dewatering in modified hand-sheet machine. The wet mats were pressed upto $4kgf/cm^2$ in the carbon and wood fiber mixture mat press. The wet mats were dried in the automatic controlled plate dryer. Investigation on the formation and surface structure of the newly developed carbon and wood fiber mixture electromagnetic shielding sheet were carried out using the scanning electron microscopy and the image analyzer. Finally electromagnetic shielding characteristics of the newly developed carbon and wood mixture sheet were measured using net-work analyser. The result was promising in the light of the fact that this method could open a new way to substitute the expensive imported electromagnetic shielding sheet.

Optimized Digital Proportional Integral Derivative Controller for Heating and Cooling Injection Molding System

  • Jeong, Byeong-Ho;Kim, Nam-Hoon;Lee, Kang-Yeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1383-1388
    • /
    • 2015
  • Proportional integral derivative (PID) control is one of the conventional control strategies. Industrial PID control has many options, tools, and parameters for dealing with the wide spectrum of difficulties and opportunities in manufacturing plants. It has a simple control structure that is easy to understand and relatively easy to tune. Injection mold is warming up to the idea of cycling the tool surface temperature during the molding cycle rather than keeping it constant. This “heating and cooling” process has rapidly gained popularity abroad. However, it has discovered that raising the mold wall temperature above the resin’s glass-transition or crystalline melting temperature during the filling stage is followed by rapid cooling and improved product performance in applications from automotive to packaging to optics. In previous studies, optimization methods were mainly selected on the basis of the subjective experience. Appropriate techniques are necessary to optimize the cooling channels for the injection mold. In this study, a digital signal processor (DSP)-based PID control system is applied to injection molding machines. The main aim of this study is to optimize the control of the proposed structure, including a digital PID control method with a DSP chip in the injection molding machine.

Deformation Analysis of a Metal Mask for the Screen Printing of Micro Bumps (스크린 인쇄용 미세 범프 금속마스크의 변형특성 해석)

  • Lee, K.Y.;Lee, H.J.;Kim, J.B.;Park, K.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.408-414
    • /
    • 2012
  • Screen printing is a printing method that uses a woven mesh to support an ink-blocking stencil by transferring ink or other printable materials in order to form an image onto a substrate. Recently, the screen printing method has applied to micro-electronic packaging by using solder paste as a printable material. For the screen printing of solder paste, metal masks containing a number of micro-holes are used as a stencil material. The metal mask undergoes deformation when it is installed in the screen printing machine, which results in the deformation of micro-holes. In the present study, finite element (FE) analysis was performed to predict the amount of deformation of a metal mask. For an efficient calculation of the micro-holes of the metal mask, the sub-domain analysis method was applied to perform FE analyses connecting the global domain (the metal mask) and the local domain (micro-holes). The FE analyses were then performed to evaluate the effects of slot designs on the deformation characteristics, from which more uniform and adjustable deformation of the metal mask can be obtained.

Development of an Eco-friendly Plasticizer using Crude Glycol Derived from the Biodiesel Process (바이오디젤부산물인 폐글리세롤을 이용한 친환경 가소제의 개발)

  • Kang, Soo-Jung;Bae, Sung-Jae;Jin, Dae-Eon;Kim, Jinhwan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.3
    • /
    • pp.365-370
    • /
    • 2014
  • Objectives: The major objective is development of an eco-friendly non-phthalate plasticizer using crude glycol derived from the biodiesel process. Methods: Glycerol monolaurate(GML) was synthesized from glycol and triglyrcerides. Glycerol diacetomonolaurate(GDAL) was synthesized from GML and acetic acid. Results: The synthesis of the GDAL plasticizer was measured with nuclear magnetic resonance spectroscopy(NMR). Mechanical properties were measured by universal testing machine(UTM) and the experimental values were compared with phthalate plasticizers such as dioctyl phthalate(DOP). In particular, the values for tensile strength and elongations with GDAL were higher than with DOP. Conclusions: We confirmed the development of an eco-friendly non-phthalate plasticizer by NMR. Based on our results, applicability for food and drug packaging materials was found.

Bio-film Composites Composed of Soy Protein Isolate and Silk Fiber: Effect of Concentration of Silk Fiber on Mechanical and Thermal Properties

  • Prabhakar, M.N.;Song, Jung Il
    • Composites Research
    • /
    • v.27 no.5
    • /
    • pp.196-200
    • /
    • 2014
  • A novel, simple and totally recyclable method has been developed for the synthesis of nontoxic, biocompatible and biodegradable bio-composite films from soy protein and silk protein. Bio films are defined as flexible films prepared from biological materials such as protein. These materials have potential application in medical and food as a packaging material. Their use depends on various parameters such as mechanical (strength and modulus), thermal, among others. In this study, prepare and characterization of bio films made from Soy Protein Isolate (SPI) (matrix) and Silk Fiber (SF) (reinforcement) through solution casting method by the addition of plasticizer and crosslinking agent. The obtained SPI and SPI/SF composites were subsequently subjected to evaluate their mechanical and thermal properties by using Universal Testing Machine and Thermal Gravimetric Analyzer respectively. The tensile testing showed significant improvements in strength with increasing amount of SF content and the % elongation at break of the composites of the SPI/SF was lower than that of the matrix. Though the interfacial bonding was moderate, the improvement in tensile strength and modulus was attributed to the higher tensile properties of the silk fiber.