• Title/Summary/Keyword: PZT-based

Search Result 296, Processing Time 0.031 seconds

Analytical Models to Predict Power Harvesting with Piezoelectric Transducer

  • Muppala, Raghava Raju;Raju, K. Padma;Moon, Nam-Mee;Jung, Baek-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.1
    • /
    • pp.6-11
    • /
    • 2008
  • Advances in low power design open the possibility to harvest energy from the environment to power electronic circuits. Electrical energy can be harvested from piezoelectric transducer. Piezoelectric materials can be used as mechanisms to transfer mechanical energy usually vibrating system into electrical energy that can be stored and used to power other devices. Micro- to milli-watts power can be generated from vibrating system. We developed definitive and analytical models to predict the power generated from a cantilever beam attached with piezoelectric transducer. Analytical models are pin-force method, enhanced pin-force method and Euler-Bernoulli method. Harmonic oscillations and random noise will be the two different forcing functions used to drive each system. It has been selected the best model for generating electric power based upon the analytical results obtained.

The Piezoelectric Characteristics of PZ-PT-PMS Ceramics for Large Displacement Application (고진동레벨에서의 PZ-PT-PMS계 세라믹의 압전특성)

  • 이동준;권순석;신달우;정수현;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.250-253
    • /
    • 1997
  • Generally, Piezoelectric ceramics based lead-zirconate-titanate(PZT) system are well known to use in high power devices. In this pacer. Pb(Mn$\sub$1/3//Sb$\sub$2/3/)O$_3$(PMS) ceramics which have been shown to be adaptable for a high power usage is introduced. The stability of piezoelectric properties in PZ-PT-PMS solid solution system such as piezoelectric constants. electromechanical coupling coefficient and mechanical quality factor is discussed by the addition effect of CeO$_2$ as a additive. The CeO$_2$ ratio ranges from 0 to 2 wt%. The resonant and anti-resonant frequencies. mechanical quality factor, and force factor are also measured as a function of vibration velocity

  • PDF

Temperature Dependence of the Electric-field-induced Strains in PMN-based Relaxor Ferroelectrics (PMN계 완화형 강유전체에서 전왜특성의 온도 의존성)

  • Park, Jae-Hwan;Hong, Guk-Seon;Park, Sun-Ja
    • Korean Journal of Materials Research
    • /
    • v.6 no.4
    • /
    • pp.349-356
    • /
    • 1996
  • 완화형 강유전체의 가장 대표적인 PMN계에서 첨가제의 종류와 함량, 측정온도, 인가 전계의형태 등의 변화에 따른 전계인가 변화특성을 광법위하게 조사하였다. Columbite precursor법에의해 분말을 준비하고 고상소결방법에 의하여 모든 시편을 제조하였다. 순수한 PMN에 첨가제로서 PbTiO3와 Pb(Zr, Ti)O3를 첨가한 경우에 완전한 perovskite 구조의 고용체가 형성되었음을 알 수 있었다. T$\varepsilon$max이상에서는 변위의 이력이 크게 발생하는 강유전체의 거동을 보여주었다. 양방향으로 전계를 인가하여 변위를 이용하면 발생 strain은 실온 근방에서 온도에 대하여 안정적이지만 단방향 전계에 따른 변위는 온도에 따라 크기가 변한다는 것을 알 수 있었고 유전상수가 큰 경우가 전왜의 크기 또한 큰 것을 알 수 있었다. 0.9MN-0.1PT와 0.8PMN-0.2PZT의 경우 최대가 되는 온도는 유전율이 최대가 되는 온도보다 더 낮은 온도에서 나타났다.

  • PDF

Vibration Control of a Intelligent Cantilevered Beam with a Distributed PVDF Sensor and PZT Actuator

  • Yun, Yeo-Hung;Kwon, Tae-Kyu;Lee, Seong-Cheol;Yu, Kee-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.22.5-22
    • /
    • 2001
  • Robust control of a GFR composite beam with a distributed PVDF sensor and piezo-ceramic actuator is presented En this paper. Modal analysis method and modal coordinates are introduced to obtain the state educations of the structural system. 1st and 2nd natural frequencies are considered In the modeling, because robust control theory which is robustness to structured uncertainty is adopted to suppress the vibration. If the controllers designed by H$\^$$\infty$/ theory do not satisfy control performance, it is improved by ${\mu}$-synthesis method with D-K Iteration so that the ${\mu}$-controller based on the structured singular value satisfies the nominal performance and robust performance.

  • PDF

Development of a Plate-type Megasonic with Cooling Pins for Sliced Ingot Cleaning

  • Hyunse Kim;Euisu Lim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.21-27
    • /
    • 2023
  • In this article, a plate-type megasonic cleaning system with cooling pins is proposed for the sliced ingot, which is a raw material of silicon (Si) wafers. The megasonic system is operated with a lead zirconate titanate (PZT) actuator, which has high electric resistance, thus when it is being operated, it dissipates much heat. So this article proposes a megasonic system with cooling pins. In the design process, finite element analysis was performed and the results were used for the design of the waveguide. The frequency with the maximum impedance value was 998 kHz, which agreed well with the measured value of 997 kHz with 0.1 % error. Based on the results, the 1 MHz waveguide was fabricated. Acoustic pressures were measured, and analyzed. Finally, cleaning tests were performed, and 90 % particle removal efficiency (PRE) was achieved over 10 W power. These results imply that the developed 1 MHz megasonic will effectively clean sliced ingot wafer surfaces.

  • PDF

Volumetric Interferometry Using Spherical Wave Interference for Three-dimensional Coordinate Metrology

  • Rhee, Hyug-Gyo;Chu, Ji-Young;Kim, Seung-Woo
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.140-145
    • /
    • 2001
  • We present a new method of volumetric interferometer, which is intended to measure the three-dimensional coordinates of a moving object in a simultaneous way with a single optical setup. The method is based on the principles of phase-measuring interferometry with phase shifting. Two diffraction point sources, which are made of the polished ends of single-mode optical fibers are embedded on the object. Two spherical wavefronts emanate from the diffraction point sources and interfere with each other within the measurement volume. One wavefront is phase-shifted by elongating the corresponding fiber using a PZT extender. A CCD array sensor fixed at the stationary measurement station detects the resulting interference field. The measured phases are then related to the three-dimensional location of the object with a set of non-liner equations of Euclidean distance, from which the complete set of three-dimensional spatial coordinates of the object is determined through rigorous numerical computation based upon the least square error minimization.

Thermo-Piezoelectric Read/Write Mechanisms for Probe-Based Data Storage

  • Nam, Hyo-Jin;Kim, Young-Sik;Lee, Sun-Yong;Jin, Won-Hyeog;Jang, Seong-Soo;Cho, Il-Joo;Bu, Jong-Uk
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.1
    • /
    • pp.47-53
    • /
    • 2007
  • In this paper, a thermo-piezoelectric mechanism with integrated heaters and piezoelectric sensors has been studied for low power probe-based data storage. Silicon nitride cantilever integrated with silicon heater and piezoelectric sensor has been developed to improve the uniformity of cantilevers. Data bits of 40 nm in diameter were recorded on PMMA film. The sensitivity of the piezoelectric sensor was 0.615 fC/nm after poling the PZT layer. And, the $34\times34$ probe array integrated with CMOS circuits has been successfully developed by simple one-step bonding process. The process can simplify the process step and reduce tip wear using silicon nitride tip.

  • PDF

Impedance-based health monitoring and mechanical testing of structures

  • Palomino, Lizeth Vargas;de Moura, Jose Dos Reis Vieira Jr.;Tsuruta, Karina Mayumi;Rade, Domingos Alves;Steffen, Valder Jr.
    • Smart Structures and Systems
    • /
    • v.7 no.1
    • /
    • pp.15-25
    • /
    • 2011
  • The mechanical properties obtained from mechanical tests, such as tensile, buckling, impact and fatigue tests, are largely applied to several materials and are used today for preliminary studies for the investigation of a desired element in a structure and prediction of its behavior in use. This contribution focus on two widely used different tests: tensile and fatigue tests. Small PZT (Lead Titanate Zirconate) patches are bonded on the surface of test samples for impedance-based health monitoring purposes. Together with these two tests, the electromechanical impedance technique was performed by using aluminum test samples similar to those used in the aeronautical industry. The results obtained both from tensile and fatigue tests were compared with the impedance signatures. Finally, statistical meta-models were built to investigate the possibility of determining the state of the structure from the impedance signatures.

Characteristics of Temperature Variation to the Piezoelectric Bimorph for Vortex Flowmeter (와류 유량센서용 압전 바이몰프의 온도변화에 따른 특성)

  • Lee, Guen-Taek;Kim, Hyung-Sun;Im, Jong-In
    • Korean Journal of Materials Research
    • /
    • v.17 no.5
    • /
    • pp.289-292
    • /
    • 2007
  • Although piezoelectric bimorph that is using as the sensor in medical and industrial measurement has large displacement, it has problems including efficiency in generating force, energy convergence, and response. Its application is being limited based on the change in resonance frequency with temperature. In this study, to overcome the disadvantages, PZT piezoelectric ceramics was prepared and produced a parallel type piezoelectric bimorphs. In addition, by using the finite element method. the configuration of piezoelectric bimorph was designed and the displacement of the bimorph based on applied electric pressure and the wave pattern were measured. By analyzing the resonance characteristics of the bimorph in the temperature range of $-60{\sim}80^{\circ}C$, an attempt was made to study the operational characteristics and temperature reliability of vortex flowmeter sensor. As a result, the resonance frequency of the bimorph was gradually increased with the temperature from $-60{\sim}80^{\circ}C$. The deflection of the bimorph was found to strongly depend on both the applied electric field waveform and the environmental temperature.

The Development of Confocal Microscopy Using the Amplified Double-compound Flexure Guide (레버 증폭 구조의 플렉서를 이용한 공초점 현미경의 개발)

  • Lee, Sang-Won;Kim, Wi-Han;Jung, Young-Dae;Park, Min-Kyu;Kim, Jee-Hyun;Lee, Sang-In;Lee, Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.1
    • /
    • pp.46-52
    • /
    • 2011
  • A confocal microscope was developed utilizing a scanning sample stage based on a home-built double-compound flexure guide. A scanning sample stage with nano-scale resolution consisted of a double leaf spring based flexure, a displacement amplifying lever, a Piezo-electric Transducer(PZT) actuator and capacitance sensors. The performance of the two-axis stage was analyzed using a commercial finite element method program prior to the implementation. A single line laser was employed as the light source along with the Photo Multiplier Tube(PMT) that served as the detector. The performance of the developed confocal microscope was evaluated with a mouse ear skin imaging test. The designed scanning stage enabled us to build the confocal microscope without the two optical scanning mirror modules that are essential in the conventional laser scanning confocal microscope. The elimination of the scanning mirror modules makes the optical design of the confocal microscope simpler and more compact than the conventional system.