• Title/Summary/Keyword: PZT Sensors

Search Result 157, Processing Time 0.023 seconds

Miniature Ultrasonic and Tactile Sensors for Dexterous Robot

  • Okuyama, Masanori;Yamashita, Kaoru;Noda, Minoru;Sohgawa, Masayuki;Kanashima, Takeshi;Noma, Haruo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.215-220
    • /
    • 2012
  • Miniature ultrasonic and tactile sensors on Si substrate have been proposed, fabricated and characterized to detect objects for a dexterous robot. The ultrasonic sensor consists of piezoelectric PZT thin film on a Pt/Ti/$SiO_2$ and/or Si diaphragm fabricated using a micromachining technique; the ultrasonic sensor detects the piezoelectric voltage as an ultrasonic wave. The sensitivity has been enhanced by improving the device structure, and the resonant frequency in the array sensor has been equalized. Position detection has been carried out by using a sensor array with high sensitivity and uniform resonant frequency. The tactile sensor consists of four or three warped cantilevers which have NiCr or $Si:B^+$ piezoresistive layer for stress detection. Normal and shear stresses can be estimated by calculation using resistance changes of the piezoresitive layers on the cantilevers. Gripping state has been identified by using the tactile sensor which is installed on finger of a robot hand, and friction of objects has been measured by slipping the sensor.

Enhancement of the Magnetic Flux in Metglas/PZT-Magnetoelectric Integrated 2D Geomagnetic Device

  • Huong Giang, D.T.;Duc, P.A.;Ngoc, N.T.;Hien, N.T.;Duc, N.H.
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.308-315
    • /
    • 2012
  • Experimental investigations of the magnetization, magnetostriction and magnetoelectric (ME) effects were performed on sandwich - type Metglas/PZT/Metglas laminate composites. The results have been analyzed by taking into account the demagnetization contribution. The study has pointed out that the magnetic flux concentration is strongly improved in piezomagnetic laminates with a narrower width leading to a significant enhancement of the ME effects. The piezomagnetic laminates with the optimal area dimension were integrated to form a 2-D geomagnetic device, which simultaneously can precisely detect the strength as well as inclination of the earth's magnetic field. In this case, a magnetic field resolution of better than $10^{-4}$ Oe and an angle precision of ${\pm}0.1^{\circ}$ were determined. This simple and low-cost geomagnetic-field device is promising for various applications.

Damage Detection of Railroad Tracks Using Piezoelectric Sensors (압전센서를 이용하는 철로에서의 손상 검색 기술)

  • Yun Chung-Bang;Park Seung-Hee;Inman Daniel J.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.240-247
    • /
    • 2006
  • Piezoelectric sensor-based health monitoring technique using a two-step support vector machine (SYM) classifier is discussed for damage identification of a railroad track. An active sensing system composed of two PZT patches was investigated in conjunction with both impedance and guided wave propagation methods to detect two kinds of damage of the railroad track (one is a hole damage of 0.5cm in diameter at web section and the other is a transverse cut damage of 7.5cm in length and 0.5cm in depth at head section). Two damage-sensitive features were extracted one by one from each method; a) feature I: root mean square deviations (RMSD) of impedance signatures and b) feature II: wavelet coefficients for $A_0$ mode of guided waves. By defining damage indices from those damage-sensitive features, a two-dimensional damage feature (2-D DF) space was made. In order to minimize a false-positive indication of the current active sensing system, a two-step SYM classifier was applied to the 2-D DF space. As a result, optimal separable hyper-planes were successfully established by the two-step SYM classifier: Damage detection was accomplished by the first step-SYM, and damage classification was also carried out by the second step-SYM. Finally, the applicability of the proposed two-step SYM classifier has been verified by thirty test patterns.

  • PDF

Load Resistance Influence of Magnetoelectric Characteristics on NiZnFe2O4+PZT Composites for Magnetoelectric Sensors

  • Ryu, Ji-Goo;Chung, Su-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.379-386
    • /
    • 2013
  • The influences of the load resistance $R_L$ on the magnetoelectric (ME) characteristics of $NiZnFe_2O_4+PZT$ composite were investigated in the non-resonance frequency range. The ME coefficient peak increases with increasing $R_L$, but the frequency indicating the ME coefficient peak decreases with increasing $R_L$. The maximum output power peak is approximately $9.3{\times}10^{-10}mW/Oe$ near $R_L=3.3M{\Omega}$ at f=280 Hz, and the ME coefficient seems to be saturated at $R_L>20M{\Omega}$. This frequency shift effect of $R_L$ shows that the frequency range for an ME sensor application can be modulated with the appropriate value of $R_L$. The ME output voltage has a good linear response to the ac field Hac and shows fair stability over a range of temperatures. The measured non-linearity of this sample is approximately 0.8%. This sample will allow for a low-strength magnetic ac-field sensor. The result from this sample will serve as basic data for a signal-processing circuit system.

Magnetoelectric Characteristics on Layered Fe78B13Si9/PZT/Fe78B13Si9 Composites for Magnetic Field Sensor (자기센서용 Fe78B13Si9/PZT/Fe78B13Si9 적층구조 소자의 ME 특성)

  • Ryu, Ji-Goo;Jeon, Seong-Jeub
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.181-187
    • /
    • 2015
  • The magnetoelectric characteristics on layered $Fe_{78}B_{13}Si_9/PZT$ and $Fe_{78}B_{13}Si_9/PZT/Fe_{78}B_{13}Si_9$($t_m=0.017$, 0.034mm) composites by epoxy bonding for magnetic field sensor were investigated in the low-frequency range and resonance frequency range. The optimal bias magnetic field $H_{dc}$ of these samples was about 23~63 Oe range. The Me coefficient of $Fe_{78}B_{13}Si_9/PZT/Fe_{78}B_{13}Si_9(t_m=0.034mm)$ composites reaches a maximum of $186mV/cm{\cdot}Oe$ at $H_{dc}=63Oe$, f=50 Hz and a maximum of $1280mV/cm{\cdot}Oe$ at $H_{dc}=63Oe$, resonance frequency $f_r=95.5KHz$. The output voltage shows linearity proportional to ac fields $H_{ac}$ and is about U=0~130.6 mV at $H_{ac}=0{\sim}7Oe$, f=50 Hz, U=0~12.4 V at $H_{ac}=0{\sim}10Oe$, $f_r=95.5KHz$(resonance frequency). The optimal frequency(f=50 Hz) of this sample is around the utility ac frequency(f=60 Hz). Therefore, this sample will allow for ac magnetic field sensor at utility frequency and low bias magnetic fields $H_{dc}$.

Sensitivity Characteristics of Acoustic Emission(AE) Sensor using the Lead-free (Na1,K)NbO3 Ceramics (무연 (Na1,K)NbO3 계 세라믹스를 이용한 AE센서의 감도특성)

  • Yoo, Ju-Hyun;Lee, Gab-Soo;Hong, Jae-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.218-222
    • /
    • 2007
  • In this study, Acoustic emission(AE) sensors were fabricated using lead-free piezoelectric ceramics for prohibiting environmental pollution. Structure of AE sensors were designed as Langvin type air backing form. Here, the piezoelectic element was used as PZT(EC-65)(AE1) and NKN(AE2), respectively. The measured resonant frequency, the maximum sensitivity frequency and sensitivity of AE sensors were as follows ; 143 kHz, 29.4 kHz and 69.3 dB in AE1 and 179 kHz, 29.4 kHz and 66.3dB in AE2, respectively.

LTCC기판상에 성장시킨 PZT박막의 열처리 특성연구

  • Lee, Gyeong-Cheon;Hwang, Hyeon-Seok;U, Hyeong-Gwan;Lee, Tae-Yong;Heo, Won-Yeong;Sim, Deung;Song, Jun-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.117-117
    • /
    • 2009
  • Recently, low temperature co-fired ceramic (LTCC) technology has gained a remarkable application potential in sensors, actuators and microsystems fields. In this study, we investigated the effects of annealing treatment on the electrical properties of $Pb(ZrTi)O_3$ (PZT) thin films deposited on LTCC substrate. The LTCC substrates with thickness of 400 ${\mu}m$ were fabricated by laminating 12 green tapes which consist of alumina and glass particle in an organic binder. The PZT thin films were deposited on Au/LTCC substrates by RF magnetron sputtering method. Then, the change of the crystallization of the films was investigated under various annealing temperatures. The results showed that the crystallization of the films were enhanced as increasing annealing temperatures. The film, annealed at $700^{\circ}C$, 3min, was well crystallized in the ferovskite structure. The structural variation of the films were analyzed by using X-Ray diffraction (XRD) and field emmision scanning electron microscopy (FESEM).

  • PDF

3차원 LTCC 기판을 이용한 압전 압력 센서의 제작 및 연구 특성

  • Heo, Won-Yeong;Hwang, Hyeon-Seok;U, Hyeong-Gwan;Lee, Tae-Yong;Lee, Gyeong-Cheon;Sim, Deung;Song, Jun-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.118-118
    • /
    • 2009
  • Low temperature co-fired ceramic (LTCC) is one of promising materials for MEMS structures because it has very good electrical and mechanical properties as well as possibility of making various three dimensional (3D) structures. In this work, piezoelectric pressure sensors based on hybrid LTCC technology were presented. The LTCC diaphragms with thickness of 400 um were fabricated by laminating 12 green tapes which consist of alumina and glass particle in an organic binder. The piezoelectric sensing layer consists of $Pb(ZrTi)O_3$ (PZT) thin film deposited by RF magnetron sputtering method on between top and bottom Au electrodes. The results showed that the fabrication method is very suitable for pressure sensor applications. The PZT films deposited on LTCC diaphragms were successfully grown and were analyzed by using X-ray diffraction method (XRD) and field emission scanning electron microscope (FESEM).

  • PDF

Frequency response characteristics of PZT pressure sensor using three dimensional LTCC substrates (3차원 LTCC 기판을 이용한 PZT 압력센서의 주파수 응답 특성)

  • Hur, Won-Young;Lee, Kyung-Chun;Hwang, Hyun-Suk;Lee, Tae-Yong;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.204-204
    • /
    • 2010
  • A development of device with reduced size and improved sensitivity is highly impotant Pb(Zr,Ti)$O_3$ thin films are widely used both to make actuator and sensor due to their high sensitivity and low cost. In this study, the feasibility of a piezoelectric presssure sensors based on hybrid low-temperaute co-fired ceramic (LTCC) technology were presented. The LTCC diaphragms with thickness of $400\;{\mu}m$ were fabricated by laminating 4 green tapes which consist of alumina and glass particle in an organic binder. PZT thin films were successfully prepared on between top and bottom Au electrode with LTCC substrates using RF magnetron sputtering. In addition, The frequency response characteristics of the sensor under varing pressure has been analysed. by Network Analyser (HP-8722D). A frequency shift range has been obseved from 1.7GHz to 1.8GHz with a good linearity for applied pressure from 0 psi up to 25 psi.

  • PDF

Crack and Debonding Donitoring of RC Beams Strengthened with CFRP Plates (CFRP 판 보강 RC보의 균열 및 박리 손상 모니터링)

  • Yoon, Jun Ho;Han, Jung Hun;Cho, Doo Yong;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.185-192
    • /
    • 2011
  • A CFRP (Carbon Fiber-Reinforced Plastic) strengthening method being widely used to increase the load-carrying capacity of structures is very suitable for existing bridge structures. However, not only flexure and shear failures but also debonding failure might be additionally occured in reinforced concrete(RC) beams strengthened with the CFRP plates. The CFRP debonding failure would cause a brittle fracture of the beam. Therefore, health monitoring for the CFRP bonding condition is strongly required. In this study, a feasibility of the impedance-based damage detection method using PZT sensors was investigated through a series of experimental studies for realtime structural health monitoring(SHM) for the CFRP laminated concrete structures.