• Title/Summary/Keyword: PWR(Pressurized Water Reactor)

Search Result 230, Processing Time 0.031 seconds

Preliminary Design Evaluation of Auxiliary Equipment for Transportation and Storage of Multi-purpose Canister (사용후핵연료 다목적 캐니스터의 운반 및 저장 보조 설비에 대한 예비설계 평가)

  • Chang Min Shin;Sang Hwan Lee;Yeon Oh Lee;In Su Jung;Gil Yong Cha
    • Journal of Radiation Industry
    • /
    • v.17 no.3
    • /
    • pp.309-320
    • /
    • 2023
  • A multi-purpose canister (MPC) was developed for the purpose of transportation, storage and disposal of spent nuclear fuel (SNF) and has the advantage of minimizing repackaging between management stages of SNF. Considering the typical rock characteristics in Korea, a disposal canister is expected to contain 4 assemblies of Pressurized water reactor (PWR) SNF. The capacity of the MPC should be similarly designed with the disposal canister. However, the MPC with four SNF assemblies is expected to be less efficient in transporting and storing compared to a large-capacity canister. Therefore, a preliminary concept was derived for an auxiliary equipment that can transport and store multiple MPCs in a large overpack. A previously derived concept from US was thoroughly reviewed, and the preliminary concept was revised considering domestic situations including crane capacity and others. In addition, the safety of the normal transportation and storage of the MPC placed in transportation and storage overpack was evaluated with the auxiliary equipment.

Adsorption Characteristics of Ni, Co and Ag Ions on The Cation Exchange Resin of Demineralization Process in Primary Coolant System of PWR (원자로 일차 냉각제 계통내 탈염공정의 양이온 교환수지상에서 니켈(Ni), 코발트(Co) 및 은(Ag) 이온의 흡착 특성)

  • Yang, Hyun S.;Kim, Young H.;Kang, Duck W.;Sung, Ki B.
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.51-57
    • /
    • 1999
  • Adsorption characteristics of Ni(II), Co(II) and Ag(I) ions on the Amberite IRN 77 cation exchange resin have been studied to suggest the guide-line for the optimum operation of demineralization process in primary coolant system during the shut-down period of pressurized water reactor(PWR). The adsorption mechanism of each metal ion, Ni(II), Co(II) or Ag(I) ion, on a cation exchange resin was well coincided with Langmuir isotherm. The adsorption and treatment capacities of $H^+$-form resin were higher than those of $Li^+$-form resin. In the continuous ion exchange process for the solution of multi-component system, the selectivity of the resin was in increasing order of Ni(II)${\approx}$Co(II)>Ag(I). In addition, the increase of the flow rate decreased the treatment capacity of the resin as well as the slope of the breakthrough curve.

  • PDF

The Integrity Verification of Tube-end Sleeve by ECT (와전류탐상검사에 의한 튜브엔드 슬리브 건전성 검증)

  • Kim, Su Jin;Kwon, Kyung Joo;Suk, Dong Hwa;Park, Ki Tae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.20-24
    • /
    • 2015
  • Steam generator(S/G) tubes in pressurized water reactor (PWR's) are subject to several types of degradation. This degradation includes denting, pitting, intergranular attack(IGA), intergranular stress corrosion cracking(IGSCC), fatigue, fretting and wear. Degradation can be derived from either the primary side(inside) or the secondary side(outside) of the tube. Recent issue for tube degradation in domestic steam generator is the tube end cracking on seal weld region. The seal weld region at the tube end and tube itself is regarded as a pressure boundary between the primary side and the secondary side. One of the Westinghouse Model-F S/G has experienced tube end cracking and its number of plugging approximately becomes to the operating limit up to 5% due to tube end cracking which was reported as SAI/MAI(single/multiple axial indication) or SCI/MCI(Single/multiple circumferential indication) from the results of eddy current testing. Eddy current mock-up test was carried out to determine the origin of cracking whether it is from weld zone area or parent tube. This result was helpful to analyze crack location on ECT data. Correct action on this problem was the installation of tube-end sleeve. Last year, after removing 340 installed plugs from tubes, selected 269 tubes took tube-end sleeve installation. Tube-end sleeve brought pressure boundary from parent tube to installed sleeve tube. Tube-end sleeve has the benefit of reducing outage period and increasing more revenue than replacing S/G. This paper is provided to assist interest parties in effectively understanding this issue.

LOCAL BURNUP CHARACTERISTICS OF PWR SPENT NUCLEAR FUELS DISCHARGED FROM YEONGGWANG-2 NUCLEAR POWER PLANT

  • Ha, Yeong-Keong;Kim, Jung-Suck;Jeon, Young-Shin;Han, Sun-Ho;Seo, Hang-Seok;Song, Kyu-Seok
    • Nuclear Engineering and Technology
    • /
    • v.42 no.1
    • /
    • pp.79-88
    • /
    • 2010
  • Spent $UO_2$ nuclear fuel discharged from a nuclear power plant (NPP) contains fission products, U, Pu, and other actinides. Due to neutron capture by $^{238}U$ in the rim region and a temperature gradient between the center and the rim of a fuel pellet, a considerable increase in the concentration of fission products, Pu, and other actinides are expected in the pellet periphery of high burnup fuel. The characterization of the radial profiles of the various isotopic concentrations is our main concern. For an analysis, spent nuclear fuels originating from the Yeonggwang-2 pressurized water reactor (PWR) were chosen as the test specimens. In this work, the distributions of some actinide isotopes were measured from center to rim of the spent fuel specimens by a radiation shielded laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) system. Sampling was performed along the diameter of the specimen by reducing the sampling intervals from 500 ${\mu}m$ in the center to 100 ${\mu}m$ in the pellet periphery region. It was observed that the isotopic concentration ratios for minor actinides in the center of the specimen remain almost constant and increase near the pellet periphery due to the rim effect apart from the $^{236}U$ to $^{235}U$ ratio, which remains approximately constant. In addition, the distributions of local burnup were derived from the measured isotope ratios by applying the relationship between burnup and isotopic ratio for plutonium and minor actinides calculated by the ORIGEN2 code.

CORE DESIGN FOR HETEROGENEOUS THORIUM FUEL ASSEMBLIES FOR PWR (II) - THERMAL HYDRAULIC ANALYSIS AND SPENT FUEL CHARACTERISTICS

  • BAE KANG-MOK;HAN KYU-HYUN;KIM MYUNG-HYUN;CHANG SOON-HEUNG
    • Nuclear Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.363-374
    • /
    • 2005
  • A heterogeneous thorium-based Kyung Hee Thorium Fuel (KTF) assembly design was assessed for application in the APR-1400 to study the feasibility of using thorium fuel in a conventional pressurized water reactor (PWR). Thermal hydraulic safety was examined for the thorium-based APR-1400 core, focusing on the Departure from Nucleate Boiling Ratio (DNBR) and Large Break Loss of Coolant Accident (LBLOCA) analysis. To satisfy the minimum DNBR (MDNBR) safety limit condition, MDNBR>1.3, a new grid design was adopted, that enabled grids in the seed and blanket assemblies to have different loss coefficients to the coolant flow. The fuel radius of the blanket was enlarged to increase the mass flow rate in the seed channel. Under transient conditions, the MDNBR values for the Beginning of Cycle (BOC), Middle of Cycle (MOC), and End of Cycle (EOC) were 1.367, 1.465, and 1.554, respectively, despite the high power tilt across the seed and blanket. Anticipated transient for the DNBR analysis were simulated at conditions of $112\%$ over-power, $95\%$ flow rate, and $2^{\circ}C$ higher inlet temperature. The maximum peak cladding temperature (PCT) was 1,173K for the severe accident condition of the LBLOCA, while the limit condition was 1,477K. The proliferation resistance potential of the thorium-based core was found to be much higher than that of the conventional $UO_2$ fuel core, $25\%$ larger in Bare Critical Mass (BCM), $60\%$ larger in Spontaneous Neutron Source (SNS), and $155\%$ larger in Thermal Generation (TG) rate; however, the radio-toxicity of the spent fuel was higher than that of $UO_2$ fuel, making it more environmentally unfriendly due to its high burnup rate.

A Three-Dimensional Simulation of Kori-1 Core by Nodal Method

  • Kim, Young-Jin;Moon, Kap-Suk;Lee, Sang-Keun;Lee, Ji-Bok;Lee, Chang-Kun
    • Nuclear Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 1981
  • The KINS (KAERI-Improved Nodal Simulation) program, a three-dimensional nodal simulation code for pressurized water reactors, has been developed and benchmarked against the first cycle of the Kori-1 reactor. The KINS program is based on the computational model used in FLARE code and has been modified to represent the PWR characteristics more explicitly. The critical boron concentration and three-dimensional power distribution at the beginning of life hot zero power have been calculated and compared with the operating data. A three-dimensional depletion calculation at the intervals of 1000 MWD/MTU turnup steps has been performed. As the result of comparison, our calculation is shown to be in excellent agreement with the operating data. It is displayed that, incorporated with the computing time, the KINS program is an effective and powerful tool for PWR core management.

  • PDF

Verification and validation of isotope inventory prediction for back-end cycle management using two-step method

  • Jang, Jaerim;Ebiwonjumi, Bamidele;Kim, Wonkyeong;Cherezov, Alexey;Park, Jinsu;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2104-2125
    • /
    • 2021
  • This paper presents the verification and validation (V&V) of a calculation module for isotope inventory prediction to control the back-end cycle of spent nuclear fuel (SNF). The calculation method presented herein was implemented in a two-step code system of a lattice code STREAM and a nodal diffusion code RAST-K. STREAM generates a cross section and provides the number density information using branch/history depletion branch calculations, whereas RAST-K supplies the power history and three history indices (boron concentration, moderator temperature, and fuel temperature). As its primary feature, this method can directly consider three-dimensional core simulation conditions using history indices of the operating conditions. Therefore, this method reduces the computation time by avoiding a recalculation of the fuel depletion. The module for isotope inventory calculates the number densities using the Lagrange interpolation method and power history correction factors, which are applied to correct the effects of the decay and fission products generated at different power levels. To assess the reliability of the developed code system for back-end cycle analysis, validation study was performed with 58 measured samples of pressurized water reactor (PWR) SNF, and code-to-code comparison was conducted with STREAM-SNF, HELIOS-1.6 and SCALE 5.1. The V&V results presented that the developed code system can provide reasonable results with comparable confidence intervals. As a result, this paper successfully demonstrates that the isotope inventory prediction code system can be used for spent nuclear fuel analysis.

Thermal Stress Analysis of the Disposal Canister for Spent PWR Nuclear Fuels (가압경수로 고준위폐기물 처분용기의 열응력 해석)

  • 권영주;하준용;최종원
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.471-480
    • /
    • 2002
  • In this paper, the thermal stress analysis of spent nuclear fuel disposal canister in a deep repository at 500 m underground is carried out for the basic design of the canister. Since the nuclear fuel disposal usually emits much heat, a long term safe repository at a deep bedrock is used. Under this situation, the canister experiences the thermal load due to the heat generation of spent nuclear fuels in the basket. Hence, in this paper the thermal stress analysis is executed using the finite element method. The finite clement code Eot the analysis Is not written directly, but a commercial code, NISA, is used because of the complexity of the structure and the large number of elements required for the analysis. The analysis result shows that even though the thermal stress is added to the stress generated by the hydrostatic underground water pressure and the swelling pressure of the bentonite buffer, the total stress is still smaller than the yield stress of the cast iron. Hence, the canister is still structurally safe when the thermal loads we included in the external loads applied on the canister.

Analysis of activated colloidal crud in advanced and modular reactor under pump coastdown with kinetic corrosion

  • Khurram Mehboob;Yahya A. Al-Zahrani
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4571-4584
    • /
    • 2022
  • The analysis of rapid flow transients in Reactor Coolant Pumps (RCP) is essential for a reactor safety study. An accurate and precise analysis of the RCP coastdown is necessary for the reactor design. The coastdown of RCP affects the coolant temperature and the colloidal crud in the primary coolant. A realistic and kinetic model has been used to investigate the behavior of activated colloidal crud in the primary coolant and steam generator that solves the pump speed analytically. The analytic solution of the non-dimensional flow rate has been determined by the energy ratio β. The kinetic energy of the coolant fluid and the kinetic energy stored in the rotating parts of a pump are two essential parameters in the form of β. Under normal operation, the pump's speed and moment of inertia are constant. However, in a coastdown situation, kinetic damping in the interval has been implemented. A dynamic model ACCP-SMART has been developed for System Integrated Modular and Advanced Reactor (SMART) to investigate the corrosion due to activated colloidal crud. The Fickian diffusion model has been implemented as the reference corrosion model for the constituent component of the primary loop of the SMART reactor. The activated colloidal crud activity in the primary coolant and steam generator of the SMART reactor has been studied for different equilibrium corrosion rates, linear increase in corrosion rate, and dynamic RCP coastdown situation energy ratio b. The coolant specific activity of SMART reactor equilibrium corrosion (4.0 mg s-1) has been found 9.63×10-3 µCi cm-3, 3.53×10-3 µC cm-3, 2.39×10-2 µC cm-3, 8.10×10-3 µC cm-3, 6.77× 10-3 µC cm-3, 4.95×10-4 µC cm-3, 1.19×10-3 µC cm-3, and 7.87×10-4 µC cm-3 for 24Na, 54Mn, 56Mn, 59Fe, 58Co, 60Co, 99Mo, and 51Cr which are 14.95%, 5.48%, 37.08%, 12.57%, 10.51%, 0.77%, 18.50%, and 0.12% respectively. For linear and exponential coastdown with a constant corrosion rate, the total coolant and steam generator activity approaches a higher saturation value than the normal values. The coolant and steam generator activity changes considerably with kinetic corrosion rate, equilibrium corrosion, growth of corrosion rate (ΔC/Δt), and RCP coastdown situations. The effect of the RCP coastdown on the specific activity of the steam generators is smeared by linearly rising corrosion rates, equilibrium corrosion, and rapid coasting down of the RCP. However, the time taken to reach the saturation activity is also influenced by the slope of corrosion rate, coastdown situation, equilibrium corrosion rate, and energy ratio β.

Nondestructive Examination of PHWR Pressure Tube Using Eddy Current Technique (와전류검사 기술을 적용한 가압중수로 원전 압력관 비파괴검사)

  • Lee, Hee-Jong;Choi, Sung-Nam;Cho, Chan-Hee;Yoo, Hyun-Joo;Moon, Gyoon-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.254-259
    • /
    • 2014
  • A pressurized heavy water reactor (PHWR) core has 380 fuel channels contained and supported by a horizontal cylindrical vessel known as the calandria, whereas a pressurized water reactor (PWR) has only a single reactor vessel. The pressure tube, which is a pressure-retaining component, has a 103.4 mm inside diameter ${\times}$ 4.19 mm wall thickness, and is 6.36 m long, made of a zirconium alloy (Zr-2.5 wt% Nb). This provides support for the fuel while transporting the $D_2O$ heat-transfer fluid. The simple tubular geometry invites highly automated inspection, and good approach for all inspection. Similar to all nuclear heat-transfer pressure boundaries, the PHWR pressure tube requires a rigorous, periodic inspection to assess the reactor integrity in accordance with the Korea Nuclear Safety Committee law. Volumetric-based nondestructive evaluation (NDE) techniques utilizing ultrasonic and eddy current testing have been adopted for use in the periodic inspection of the fuel channel. The eddy current testing, as a supplemental NDE method to ultrasonic testing, is used to confirm the flaws primarily detected through ultrasonic testing, however, eddy current testing offers a significant advantage in that its ability to detect surface flaws is superior to that of ultrasonic testing. In this paper, effectiveness of flaw detection and the depth sizing capability by eddy current testing for the inside surface of a pressure tube, will be introduced. As a result of this examination, the ET technique is found to be useful only as a detection technique for defects because it can detect fine defects on the surface with high resolution. However, the ET technique is not recommended for use as a depth sizing method because it has a large degree of error for depth sizing.