• Title/Summary/Keyword: PWM rectifier

Search Result 287, Processing Time 0.024 seconds

Sensorless Control of PMSG for Small Wind Turbines (소형 풍력발전용 영구자석형 동기발전기의 센서리스 제어)

  • Jang, Suk-Ho;Park, Hong-Geuk;Lee, Dong-Choon;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 2009
  • In this paper, a sensorless control of PMSG(Permanent Magnet Synchronous Generator) for small wind turbine systems, which is based on stator flux and back-emf estimation. Also, a cost-effective AE/DC/AC converter that consists of a two-leg three-phase PWM converter and a half-bridge PWM converter is used for vector control of PMSG, which is impossible with the conventional diode-rectifier type converter. A sensorless control algorithm can eliminate pulse encoders for speed measurement, which reduces the system cost. Using PSIM simulation, the validity of the converter control performance and MPPT control of PMSG have been verified.

Characteristics of DC 48[V] telecommunication power supply (DC 48[V] 통신용 전원 장치의 특성)

  • Jung, H.T.;Jo, M.C.;Youn, Y.T.;Kim, J.Y.;Mun, S.P.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2462-2464
    • /
    • 2005
  • The AC-DC converter, which has three-phase AC power as input and isolated DC power as output is used for the regulated DC power supply of the telecommunication power processing system for several kilowatt class applications. The conventional DC power supply for the telecommunication power system comprises a PWM rectifier with sine-wave shaping input current unity power factor and a DC/DC converter connected to the PWM converter, which obtains DC 48[V]. Since power passes through these two power stage converters, the conversion power loss is difficult to provide high efficiency. To resolve these problems, this paper presents a new PWM rectified as a 1-stage power conversion method. It simulation and experimental results as proved from a Practical point of view that 92.1[%]of conversion efficiency and input current which can meet harmonics regulation of the Class-A in IEC61000-3-3 are achieved.

  • PDF

Characteristics of DC 48[V] telecommunication power supply (DC 48[V] 통신용 전원 장치의 특성)

  • Jung, H.T.;Jo, M.C.;Youn, Y.T.;Kim, J.Y.;Mun, S.P.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1820-1822
    • /
    • 2005
  • The AC-DC converter, which has three-phase AC power as input and isolated DC power as output is used for the regulated DC power supply of the telecommunication power processing system for several kilowatt class applications. The conventional DC power supply for the telecommunication power system comprises a PWM rectifier with sine-wave shaping input current unity power factor and a DC/DC converter connected to the PWM converter, which obtains DC 48[V]. Since power passes through these two power stage converters, the conversion power loss is difficult to provide high efficiency. To resolve these problems, this paper presents a new PWM rectified as a 1-stage power conversion method. It simulation and experimental results as proved from a practical point of view that 92.1[%]of conversion efficiency and input current which can meet harmonics regulation of the Class-A in IEC61000-3-3 are achieved.

  • PDF

Air-Conditioner Power Source Device to Meet the Harmonic Guide Lines (고조파 규제값에 적합한 에어컨 전원장치)

  • Mun, Sang-Pil;Park, Yeong-Jo;Seo, Gi-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.10
    • /
    • pp.581-586
    • /
    • 2002
  • To improve the current waveform of diode rectifiers, we propose a new operating principle for the voltage-doubler diode rectifiers. In the conventional voltage-doubler rectifier circuit, relatively large capacitors are used to boost the output voltage, while the proposed circuit uses smaller ones and a small reactor not to boost the output voltage but improve the input current waveform. A circuit design method is shown by experimentation and confirmed simulation. The experimental results of the proposed diode rectifier satisfies the harmonic guide lines. A high input power factor of 97(%) and an efficiency of 98[%] are also obtained. The new rectifier with no controlled switches meet the harmonic guide lines, resulting in a simple, reliable and low-cost at-to dc converters in comparison with the boost-type current-improving circuits. This paper proposes a nonlinear impedance circuit composed by diodes and inductors or capacitors. This circuit needs no control circuits and switches, and the impedance value is changed by the polarity of current or voltage. And this paper presents one of these applications to improve the input current of capacitor input diode rectifiers. The rectifier using the nonlinear impedance circuit is constructed with four diodes and four capacitors in addition to the conventional rectifiers, that is, it has eight diodes and five capacitors, including a DC link capacitor. It makes harmonic components of the input current reduction and the power factor improvement. Half pulse-width modulated (HPWM) inverter was explained compared with conventional pulse width modulated(PWM) inverter. Proposed HPWM inverter eliminated dead-time by lowering switching loss and holding over-shooting.

Fault Diagnosis for 3-Phase Diode Rectifier using Harmonic Ripples of DC Link Voltage (직류단 전압의 고조파 맥동 검출을 이용한 3상 다이오드 정류기의 고장 진단)

  • Park, Je-Wook;Baek, Seong-Won;Kim, Jang-Mok;Lee, Dong-Choon;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.457-465
    • /
    • 2011
  • The fault analysis and detecting algorithm for a 3 phase diode rectifier is proposed. The 3 phase dioderectifier is used for the AC power rectifier of the PWM inverter. The input power or diode faults cause theripples of the DC voltage, degradation of the control performance and life shortening of the DC link capacitor.In this paper, the ripple of the DC voltage is mathematically analyzed for the earth fault of input power andopen circuit fault of the diode, respectively. The fault detection and type of fault can be obtained by comparingthe average DC voltage and the instant DC voltage which is sampled with 6 times of grid frequency. Theproposed method can be easily applicable and doesn't require additional circuit. The experimental and simulationresults are presented to verify the validity of the proposed method.

Phase-Shift Full-Bridge DC-DC Converter using the One-Chip Micom (단일칩 마이컴을 이용한 위상변위 방식 풀브리지 직류-직류 전력변환기)

  • Jeong, Gang-Youl
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.517-527
    • /
    • 2021
  • This paper presents the phase-shift full-bridge DC-DC converter using the one-chip micom. The proposed converter primary is the full-bridge power topology that operates with the unipolar pulse-width modulation (PWM) by the phase-shift method, and the secondary is the full-bridge full-wave rectifier composed of four diodes. The control of proposed converter is performed by the one-chip micom and its MOSFET switches are driven by the bootstrap circuit. Thus the total system of proposed converter is simple. The proposed converter achieves high-efficiency using the resonant circuit and blocking capacitor. In this paper, first, the power-circuit operation of proposed converter is explained according to each operation mode. And the power-circuit design method of proposed converter is shown, and the software control algorithm on the micom and the feedback and switch drive circuits operating the proposed converter are described, briefly. Then, the operation characteristics of proposed converter are validated through the experimental results of a designed and implemented prototype converter by the shown design and implementation method in this paper. The highest efficiency in the results was about 92%.

The Improvement of Output Voltage of UPS Using a Parallel Control Method (병렬 제어기법을 이용한 UPS 출력 전압의 개선)

  • 成 炳 模;姜 弼 淳;朴 晟 濬;金 喆 禹
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.158-164
    • /
    • 2002
  • This paper presents a proper parallel control method using a conventional control and a repetitive control for improving the output voltage waveform of uninterruptable power supply. Although first-order prediction control method shows a good characteristics to rectifier load, it is not sufficient to reduce steady state errors generated in nonlinear loads such as rectifier loads and phase controled loads. So we also employed a repetitive control method. A repetitive control method can eliminate steady state errors in the distorted output voltage caused by cyclic loads. The presented control scheme is verified through simulation and experiment. Experimental results Implemented on a single phase PWM inverter equipped with a LC output filter with 3 kVA, 60 Hz are shown.

Direction for Development of Energy Regeneration Device for DC Electric Railway System (DC전철구간의 에너지회생장치 개발 방향)

  • Kim, Yong-Ki;Bae, Chang-Han;Han, Moon-Seob;Yang, Young-Chul;Jang, Su-Jin
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.804-808
    • /
    • 2007
  • when electric traction system used DC 1500V runs on decline of rail road track and slows down, Dc voltage goes beyond regular voltage. In this case extra power is forcibly wasted by resister because rectifier of substation and electric train including power converter and so on are out of order. This paper described a DC electric railway system, which can generate the excessive DC power form DC bus line to AC source in substation for traction system. The proposed regeneration inverter system for DC traction can be used as both an inverter and an active power filter(APF). As a regeneration inverter mode, it can recycle regenerative energy caused by decelerating tractions and as an active power filter mode, it can compensate for harmonic distortion produced by the rectifier substation. In addition, electric traction system products harmonic current and voltage distortion and reactive power because power converter is used so regeneration inverter normally runs such as active power filter(APF) for improving power quality. From the viewpoint of both power capacity and switching losses, the system is designed on the basis of three phase PWM inverters and composed of parallel inverters, output transformers, and an LCL filter.

  • PDF

Module-Type Switching Rectifier for Cathodic Protection of Underground and Maritime Metallic Constructions (지하매설 및 해양 금속구조물 음극방식용 모듈 타입 스위칭 정류기)

  • Moon Sang-Ho;Kim Bo-Kyoung;Kim In-Dong;Nho Eui-Cheol;Kwon Young-Won;Jeong Seong-Woo;Lim Heon-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.529-532
    • /
    • 2002
  • 본 과제를 통해 금속 구조물 음극 방식용 고성능 스위칭 정류기를 개발하였다. 개발된 정류기 회로는 크게 두 부분, 즉 1대로 구성된 AC/DC 컨버터부와 4대로 구성된 Module Type DC/DC 컨버터부로 되어 있다. AC/DC 컨버터는 IGBT PWM Rectifier로서 입력전압의 역률을 거의 1로 제어하고 있으며 또한 DC Link 전압을 일정하게 제어하고 있다. Module Type DC/DC 컨버터는 ZCS/ZVS 스위칭 동작을 통하여 스위칭 손실 감소와 함께 고주파 동작을 가능하게 하여, 입력측과 출력측의 전기적 절연을 위한 변압기로 고주파 변압기를 사용할 수 있게 하였다. 이로 인해 시스템의 부피와 무게를 현저히 감소시켰다. 본 과제에서 개발한 방식용 정류기 기술은 다른 유사 분야에의 적용도 가능한 것으로 사료된다.

  • PDF

Half-Bridge Zero Voltage Switching Converter with Three Resonant Tanks

  • Lin, Bor-Ren;Lin, Wei-Jie
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.882-889
    • /
    • 2014
  • This paper presents a zero voltage switching (ZVS) converter with three resonant tanks. The main advantages of the proposed converter are its ability to reduce the switching losses on the power semiconductors, decrease the current stress of the passive components at the primary side, and reduce the transformer secondary windings. Three resonant converters with the same power switches are adopted at the low voltage side to reduce the current rating on the transformer windings. Using a series-connection of the transformer secondary windings, the primary side currents of the three resonant circuits are balanced to share the load power. As a result, the size of both the transformer core and the bobbin are reduced. Based on the circuit characteristics of the resonant converter, the power switches are turned on at ZVS. The rectifier diodes can be turned off at zero current switching (ZCS) if the switching frequency is less than the series resonant frequency. Therefore, the reverse recovery losses on the rectifier diodes are overcome. Experiments with a 1.6kW prototype are presented to verify the effectiveness of the proposed converter.