• Title/Summary/Keyword: PWM Pulse

Search Result 967, Processing Time 0.028 seconds

Design and Simulation of analog controller for 3 Phase PWM Converter Based on Stationary Reference Frame (3상 PWM Converter를 위한 정지 좌표계법 Analog 제어기 설계 및 시뮬레이션)

  • 이영국;노철원;최종률
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.14-20
    • /
    • 1997
  • Due to several advantages of Pulse Width Modulated(PWM) Converter, such as unity power factor with low-harmonics and energy regeneration, PWM converter has been widely used in industrial application. In every application of energy conversion equipment, the design and implementation must be carried out considering performance and cost. High quality with low cost is the best choice for energy conversion equipment. High dc link voltage can reduce inverter and motor side losses and system dimension compare to low dc link voltage. Analog controller can make PWM converter cheaper without considerable degradation of the performance than digital controller. This paper shows the simplified analog controller-for 600V dc link voltage using stationary reference frame control and the simulation results.

  • PDF

Single-Phase Step-Up Five-Level Inverter with Phase-Shifted Pulse Width Modulation

  • Chen, Jianfei;Wang, Caisheng;Li, Jian
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.134-145
    • /
    • 2019
  • A single-phase step-up five-level inverter topology with a new phase-shifted pulse width modulation (PS-PWM) strategy is proposed in this paper. When compared with conventional single-phase five-level inverter topologies, the proposed topology can realize multilevel inversion with a double step-up ratio, a reduced number of switching devices and self-balanced capacitor voltages. When compared with the conventional PS-PWM strategy, the new PS-PWM strategy can be implemented with one carrier reduced, which makes it much easier to implement in a digital signal processor (DSP) system. Experimental results have been presented to verify the effectiveness of the proposed inverter and the PS-PWM strategy.

Stability Analysis for Fuzzy PWM System (퍼지 PWM 시스템에 대한 안정도 분석)

  • Seong, Hwa-Chang;Ju, Yeong-Hun;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.373-376
    • /
    • 2008
  • 본 논문은 퍼지 펄스 폭 변조 (Pulse-width-modulation: PWM) 시스템의 안정도에 대해 다루게 된다. 복잡성을 가진 비선형 시스템은 Takagi-Sugeno (T-S) 퍼지 모델에 의해 효율적으로 논의될 수 있다. 본 논문에서는 기존의 LTI 시스템에서 논의 되었던 PWM 제어기 설계 문제를 퍼지 시스템으로 확장시킴으로써 PWM 제어기에 대한 논의의 저변을 확대시키고자 한다. 또한, 리아푸노프 (Lyapunov) 안정도에 기반 한 안정도 증명을 통해 퍼지 PWM 시스템의 안정도를 분석하고자 한다.

  • PDF

Reduction of Common Mode Voltage in Asymmetrical Dual Inverter Configuration Using Discontinuous Modulating Signal Based PWM Technique

  • Reddy, M. Harsha Vardhan;Reddy, T. Bramhananda;Reddy, B. Ravindranath;Suryakalavathi, M.
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1524-1532
    • /
    • 2015
  • Conventional space vector pulse width modulation based asymmetrical dual inverter configuration produces high common mode voltage (CMV) variations. This CMV causes the flow of common mode current, which adversely affects the motor bearings and electromagnetic interference of nearby electronic systems. In this study, a simple and generalized carrier based pulse width modulation (PWM) technique is proposed for dual inverter configuration. This simple approach generates various continuous and discontinuous modulating signals based PWM algorithms. With the application of the discontinuous modulating signal based PWM algorithm to the asymmetrical dual inverter configuration, the CMV can be reduced with a slightly improved quality of output voltage. The performance of the continuous and discontinuous modulating signals based PWM algorithms is explored through both theoretical and experimental studies. Results show that the discontinuous modulating signal based PWM algorithm efficiently reduces the CMV and switching losses.

EPLD based Induction Motor Drives with a New Three-Phase Randomized Pulse Position PWM Scheme (새로운 3상 랜덤 펄스 위치 PWM기법에 의한 EPLD기반의 모터 속도제어 시스템)

  • Kim Hoe-Geun;Wi Seog-Oh;Lim Young-Cheol;Jung Young-Gook;Na Seok-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.308-312
    • /
    • 2002
  • In this paper, EPLD(Erasable Programmable Logic Device) based induction motor drives with a SRP-PWM(Separatley Randomized Pulse Position PWM) is proposed. In the proposed RPWM (Random PWM), each of three phase pulses is located randomly in each switching interval. Based on the space vector modulation technique, the duty ratio of the pulses is calculated. To verify the validity of the proposed RPWM, the experimental study was tried. Along with the randomization of PWM pulses, the space vector modulation is also executed in the TMS320C31 DSP(Digital Signal Processor). The experimental results show that the voltage and switching noise harmonics are spread to a wide band area. Also, the performance of the proposed SRP-PWM and the conventional SVM-PWM are nearly the same from the viewpoing of the v/f constant control.

  • PDF

A Study on the D-Q Control based Output Voltage Control Algorithm and EMTP-RV Simulation of Three-phase 6-Pulse PWM Rectifier (3상 6펄스 PWM 정류기의 D-Q 제어 기반 출력전압 제어 알고리즘 및 EMTP-RV 시뮬레이션 연구)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.45-52
    • /
    • 2021
  • The space vector control based voltage control method for a three-phase PWM rectifier requires a lot of effort to design an optimal switching pattern since a switching pattern for the switching section must be designed. In this study, a D-Q control based SPWM output voltage control algorithm was studied for the three-phase six-pulse CVS type rectifier. In the output voltage control algorithm, three-phase reference signals are obtained from the D-Q transformation based on the space vector representation method, instead of the switching pattern, SPWM method is used to generate rectifier switching control signals. Next, a three-phase six-pulse CVS PWM rectifier based on D-Q transformation and SPWM was modeled using EMTP-RV. Finally, the validity of the D-Q control-based SPWM voltage control algorithm was confirmed by comparing the output voltage waveform obtained through EMTP-RV simulation works with a reference value and confirming that the output voltage accurately follows the reference voltage.

Performance Evaluation of Various Bus Clamped Space Vector Pulse Width Modulation Techniques

  • Nair, Meenu D.;Biswas, Jayanta;Vivek, G.;Barai, Mukti
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1244-1255
    • /
    • 2017
  • The space vector pulse width modulation (SVPWM) technique is a popular PWM method for medium voltage drive applications. Conventional SVPWM (CSVPWM) and bus clamped SVPWM (BCSVPWM) are the most common SVPWM techniques. This paper evaluates the performance of various advanced BCSVPWM strategies in terms of their harmonic distortion and switching loss based on a uniform frame work. A uniform frame work, pulse number captures the performance parameter variations of different SVPWM strategies for various number of samples with heterogeneous pulse numbers. This work compares different advanced BCSVPWM techniques based on the modulation index and location of the clamping position (zero vector changing angle ) of a phase in a line cycle. The frame work provides a fixed fundamental frequency of 50Hz. The different BCSVPWM switching strategies are implemented and compared experimentally on a 415V, 2.2kW, 50Hz, 3-phase induction motor drive which is fed from an IGBT based 2 KVA voltage source inverter (VSI) with a DC bus voltage of 400 V. A low cost PIC microcontroller (PIC18F452) is used as the controller platform.

Hybrid Pulse Width Modulation Strategy for Wide Speed Range in IPMSM with Low Cost Drives

  • Ahn, Han-woong;Go, Sung-chul;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.670-674
    • /
    • 2016
  • The control performance of hybrid PWM inverter using a phase current measurement is presented in this paper. The hybrid PWM technique consists of space vector pulse width modulation (SVPWM) and six-step voltage control operation. The SVPWM is performed to reduce the harmonic components in the low speed region, and the six-step modulation is applied to increase the maximum speed of the IPMSM in the high speed region. Therefore, it is possible to obtain a great performance in both the low speed range and high speed range. However, the six-step modulation cannot be completely implemented, since the inverter that includes the lag-shunt sensing method has an immeasurable current region. In this paper, a quasi-six-step modulation using a modified voltage vector is proposed. The validity and usefulness of the proposed PWM technique is verified by MATLAB/Simulink and experimental results.

Improved Phase-shift Pulse-width Modulation Full-bridge Converter using a Blocking Capacitor (블로킹커패시터를 이용한 향상된 위상천이 펄스폭변조 풀브리지 컨버터)

  • Jeong, Gang-Youl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.20-29
    • /
    • 2011
  • This paper presents an improved phase-shift pulse-width modulation (PWM) full-bridge converter using a blocking capacitor. As the proposed converter reduces the circulation energy by inserting only one series blocking capacitor at the primary side of the conventional phase-shift PWM full-bridge converter structure, it improves the operation characteristics of the conventional converter. In this paper, first, the operation of conventional phase-shift PWM full-bridge converter is roughly reviewed, and then the operational principle of the proposed converter is classified and explained by each mode. After that, a prototype design example based on the operational principle is shown. Then, the improved operation characteristics of the proposed converter are actually verified through the experimental results.

Design of Temperature Stable Pulse Width Modulation Circuit Using CMOS Process Technology (CMOS 공정을 이용하는 동작온도에 무관한 펄스폭 변조회로 설계)

  • Kim, Do-Woo;Choi, Jin-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.186-187
    • /
    • 2007
  • In this work, a temperature stable PWM(Pulse width modulation) circuit is proposed. The designed PWM circuit has a temperature dependent current source and a temperature independent voltage to compensate electrical characteristics with operating temperature. The variation of driving current is from about 4% to -6% in the temperature range $0^{\circ}C\;to\;70^{\circ}C$ compared to the current at the room temperature. The variation of bandgap voltage reference is from about 1.3% to -0.2% with temperature when the supply voltage is 3.3 volts. From simulation results, the variation of output pulse width is less than from 0.86% to -0.38% in the temperature range $0^{\circ}C\;to\;70^{\circ}C$.

  • PDF