• Title/Summary/Keyword: PWM Control

Search Result 2,049, Processing Time 0.035 seconds

Output Voltage Control in a Serise Multilevel H-bridge Inverter with SHE-PWM Method (직렬 멀티레벨 H-bridge inverter에서 SHE-PWM방식을 사용한 출력 전 압의 제어)

  • Kim J.Y.;Jeong S.G.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.1-4
    • /
    • 2003
  • This paper proposes a method of voltage control for three-phase multilevel H-bridge inverters with selective harmonic elimination (SHE) PWM The full-bridge configuration of H-bridge inverter cells enables voltage control with a fixed PWM pattern by means of phase shifting between the legs, which greatly simplifies the control while maintaining the harmonic elimination characteristics. The series combination of the cells in multilevel configuration can be exploited to further improve the hormonic elimination characteristics with proper phase shifting between the ceil volitage. A complexor-based control method is introduced to control the magnitude and phase angle of cell voltages that form three-phase multilevel output voltages. Simulation results show that the proposed method along with SHE PWM would provide satisfactory performance in spite of its simplicity.

  • PDF

A Study on Pressure Control of Pneumatic Regulator using Modified PWM Algorithm (개량된 PWM 알고리즘을 이용한 공압 레귤레이터의 압력제어에 관한 연구)

  • Kim HyoungSeog;Ahn KyoungKwan;Lee ByungRyong;Yun SoNam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.64-70
    • /
    • 2005
  • The development of an accurate and energy saving pneumatic regulator that may be applied to a variety of practical pressure control applications is described in this paper. A novel modified pulse width modulation(MPWM) valve pulsing algorithm allows the pneumatic regulator to become energy saying system. A comparison between the system response of conventional PWM algorithm and that of the modified PWM(MPWM) algorithm shows that control performance is almost the same, but energy saving is greatly improved by adopting this new MPWM algorithm. The effectiveness of the proposed control algorithm are demonstrated through experiments with various reference trajectories.

High Performance Control of IPMSM Using HAI based SV-PWM (HAI 기반의 SV-PWM을 이용한 IPMSM의 고성능 제어)

  • Kim, Do-Yeon;Choi, Jung-Sik;Ko, Jae-Sub;Jung, Byung-Jin;Jung, Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.175-177
    • /
    • 2008
  • This paper is proposed a high performance speed control of the Interior Permanent Magnet Synchronous Motor through the HAI based SV-PWM. SV-PWM is controlled using HAI control. SV-PWM can be maximum used maximum dc link voltage and is excellent control method due to characteristic to reducing harmonic more than others. The hybrid combination of fuzzy control and adaptive control will produce a powerful representation flexibility and numerical processing capability. Simulation results are presented to show the validity of the proposed algorithm.

  • PDF

A Study on The PWM Control of Resonant Inverters (공진형 인버터의 PWM 제어에 관한 연구)

  • Shin, Jae-Hwa;Cho, Kyu-Min;Kim, Young-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.1
    • /
    • pp.53-60
    • /
    • 2001
  • In many applications of power electronics, high frequency resonant inverters are used, and the PAM(Pulse Amplitude Modulation), PFM(Pulse Frequency Modulation) or PWM(Pulse Width Modulation) techniques are used to control the output power of resonant inverters. And the resonant inverters have to control the output frequency for the reliable operation under the variable load conditions. In this paper, a new switching scheme is proposed as a PWM control of resonant inverters. With the proposed method, it can be obtained that optimum resonant frequency and unity output displacement factor under the variable resonant frequency adaptively. The detail algorithm or the proposed PWM switching scheme and its output characteristics are discussed. And the veridity of the proposed method is confirmed with the experimental results.

  • PDF

PWM Control of Reduced Switch Z-Source Inverter (스위치 저감형 Z-Source Inverter PWM 제어)

  • Kim, Seong-Hwan;Park, Tae-Sik
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.53-57
    • /
    • 2019
  • In this paper, we propose a new Z-source inverter structure to reduce switching elements and PWM pulse control method. Z-network is connected between the inverter backplane and ground, rather than between the DC voltage and the inverter in an improved Z-source inverter. And the improved Z-source inverter has the advantages of limiting the capacitor inrush current and reducing the capacitor voltage stress. We have proposed a topology of a new type of switch-reduced improved Z-source inverter that reduces the number of switches from six to four in an improved Z-source inverter and developed a PWM control method suitable for the proposed topology. The characteristics and the performance of the proposed method were verified by using PSIM simulation.

Development of a Hydraulic Level Control System for High-speed Rice Transplanting Machines (고속 이앙기의 유압 수평 제어 장치 개발에 관한 연구)

  • 정연근;정병학;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.27 no.2
    • /
    • pp.79-88
    • /
    • 2002
  • This study was conducted to develop system for high speed rice transplanting machines. The control system includes a sensor detecting the tilt angle of the seedling bed, a micro-controller and a hydraulic system consisting of a double acting cylinder, a four-way three-position solenoid valve, a relief valve and a hydraulic pump. The levelling system shared the pump with the existing steering control, resulting in a tandem center circuit for the steering and levelling control systems. Using the input signal from the sensor, the micro-controller determined and generated the output signal to control the cylinder through the solenoid valve to keep the seedling bed always parallel to the water surface regardless of soil unevenness during the transplanting operations. Both an ON/OFF and a PWM control schemes were tested. When the flow rate was more than 1 ι/min in the ON/OFF control, the system showed unstable rolling. However, in the PWM control, the system worked stably although the flow rate was more than 1 ι/min. The PWM control showed a better performance when a large difference between the angle and the dead band of the control system occurred. The characteristics of tile system response to given tilt angles were predicted by a computer simulation. Both the ON/OFF and the PWM control systems worked well providing that the operating and waiting times were properly adjusted.

PWM Control Techniques for Single-Phase Multilevel Inverter Based Controlled DC Cells

  • Sayed, Mahmoud A.;Ahmed, Mahrous;Elsheikh, Maha G.;Orabi, Mohamed
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.498-511
    • /
    • 2016
  • This paper presents a single-phase five-level inverter controlled by two novel pulse width modulation (PWM) switching techniques. The proposed PWM techniques are designed based on minimum switching power loss and minimum total harmonic distortion (THD). In a single-phase five-level inverter employing six switches, the first proposed PWM technique requires four switches to operate at switching frequency and two other switches to operate at line frequency. The second proposed PWM technique requires only two switches to operate at switching frequency and the rest of the switches to operate at line frequency. Compared with conventional PWM techniques for single-phase five-level inverters, the proposed PWM techniques offer high efficiency and low harmonic components in the output voltage. The validity of the proposed PWM switching techniques in controlling single-phase five-level inverters to regulate load voltage is verified experimentally using a 100 V, 500 W laboratory prototype controlled by dspace 1103.

Input AC Voltage Sensorless Control for a Three-Phase Z-Source PWM Rectifier (3상 Z-소스 PWM 정류기의 입력 AC 전압 센서리스 제어)

  • Han, Keun-Woo;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.355-364
    • /
    • 2013
  • Respect to the input AC voltage and output DC voltage, conventional three-phase PWM rectifier is classified as the voltage type rectifier with boost capability and the current type rectifier voltage with buck capability. Conventional PWM rectifier can not at the same time the boost and buck capability and its bridge is weak in the shoot- through state. These problems can be solved by Z-source PWM rectifier which has all characteristic of voltage and current type PWM rectifier. By shoot-through duty ratio control, the Z-source PWM rectifier can buck and boost at the same time, also, there is no need to consider the dead time. This paper proposes the input AC voltage sensorless control method of a three-phase Z-source PWM rectifier in order to accomplish the unity input power factor and output DC voltage control. The proposed method is estimated the input AC voltage by using input AC current and output DC voltage, hence, the sensor for the input AC voltage detection is no needed. comparison of the estimated and detected input AC voltage, estimated phase angle of the input voltage, the output DC voltage response for reference value, unity power factor, FFT(Fast Fourier Transform) of the estimated voltage and efficiency are verified by PSIM simulation.

Comparison of Starting Current Characteristics for Three-Phase Induction Motor Due to Phase-control Soft Starter and Asynchronous PWM AC Chopper

  • Thanyaphirak, Veera;Kinnares, Vijit;Kunakorn, Anantawat
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1090-1100
    • /
    • 2017
  • This paper presents the comparison of starting current characteristics of a three-phase induction motor fed by two types of soft starters. The first soft starter under investigation is a conventional AC voltage controller on the basis of a phase-control technique. The other is the proposed asynchronous PWM AC chopper which is developed from the conventional synchronous PWM AC chopper. In this paper, the proposed asynchronous PWM AC chopper control scheme is developed by generating only two asynchronous PWM signals for a three-phase main power circuit (6 switching devices) from a single voltage control signal which is compared with a single sawtooth carrier signal. By this approach, the PWM signals are independent and easy to implement since the PWM signals do not need to be synchronized with a three-phase voltage source. Details of both soft starters are discussed. The experimental and simulation results of the starting currents are shown. It is found that the asynchronous PWM AC chopper efficiently works as a suitable soft starter for the three-phase induction motor due to that the starting currents are reduced and are sinusoidal with less harmonic contents, when being compared with the starting current waveforms using the conventional phase-control starting technique. Also the proposed soft starter offers low starting electromagnetic torque pulsation.

Force/Torque Control of Ultrasonic Motor with PWM Driving Method (PWM 구동방식을 이용한 초음파 모터의 힘/ 토크제어)

  • 최병현;최혁렬
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2723-2731
    • /
    • 2000
  • Ultrasonic motors(USM) has been emerging as one type actuators, which possess many advantages such as high torque, low weight, compact size and no magnetic field generation. In spite of these features, there are several problems to be solved, which are temperature rise in case of long term operation, non -linearity, and hysteresis. Among these, hysteresis cause the most serious problem in force/torque control applications. To cope with this paper we propose a new PWM driving method which can be applied to force/torque control applications. To cope with this problem, in this paper we propose a new PWM driving method which can applied to force/torque control of USM. To verify the proposed method, an experimental setup was built and several experiments were performed.