• 제목/요약/키워드: PVP K30

검색결과 64건 처리시간 0.029초

아시클로비어 고체분산체의 용해도에 대한 수용성 고분자의 종류 및 배합 비율에 따른 효과 (Effect of Types and Mixing Ratios of Water-Soluble Polymers on In Vitro Release Profile of Sold Dispersion for Acyclovir)

  • 안용산;이하영;홍금덕;정성범;조선행;이종문;이해방;강길선
    • Journal of Pharmaceutical Investigation
    • /
    • 제34권4호
    • /
    • pp.289-297
    • /
    • 2004
  • Acyclovir (ACV) is one of the most effective and selective agents against viruses of the herpes group. Because of low solubility, bioavailability of ACV has shown below 30% with oral dosage form. In our previous study, we reported that the fabrication of solid dispersion of ACV was possible and the solid dispersion of ACV and PVP was the most useful in all samples. In this study, we examined the effect of mixture ratio of polymers (PEG and PVP) to ACV. Solubility of ACV was dramatically increased up to 25 mg/ml in $80^{\circ}C$ distilled water. So water was used as a solvent to eliminate problem of residual solvent. Spray drying method was used for the solid dispersion of ACV as solvent extraction. Different scanning calorimeter was used to check degradation of drug. Polymer carriers were PEG 6,000 and PVP. In summary, ACV-PVP (1:3) showed the best solubility in distilled water.

초임계 유체를 이용한 난용성 약물의 고체분산체 제조 (Preparation of Solid Dispersions of a Poorly Water-soluble Drug Using Supercritical Fluid)

  • 김석윤;이정민;정인일;임교빈;유종훈
    • KSBB Journal
    • /
    • 제24권6호
    • /
    • pp.533-540
    • /
    • 2009
  • 본 연구에서는 난용성 약물인 5'-NIO의 가용화를 위해 초임계 유체 ASES 공정을 이용하여 PVP K-30과의 고체분산체를 제조하고 첨가제인 P188의 영향에 대해 고찰하였다. FE-SEM을 이용하여 초임계 유체 공정으로 제조된 고체분산체 미립자의 형상을 분석한 결과 100-200 nm 크기의 나노입자들이 응집된 형태를 나타내었으며, P188의 함량이 증가함에 따라 입자간의 응집이 증가하여 덩어리 형태로 전환되는 것을 확인할 수 있었다. XRD 분석 결과 5'-NIO 결정피크가 사라진 것을 확인하였으며, 이는 5'-NIO가 고분자 매질내에 분자 또는 나노 크기 수준으로 분산되었음을 의미한다. 또한 FT-IR 분석 결과 5'-NIO와 PVP K-30간에 수소결합과 같은 상호작용이 존재함을 학인할 수 있었다. 5'-NIO/PVP K-30 2성분계 고체분산체에 비이온성 계면활성제를 첨가한 경우 용출률이 현저히 향상되었으나, P188의 함량이 매우 큰 경우에는 오히려 용출률이 감소한 다는 것을 확인하였다. 본 연구를 통해 초임계 유체 공정이 기존의 고체분산체 제조 방법을 충분히 대체할 수 있다는 가능성을 확인할 수 있었다.

One-pot Syntheses of Metallic Hollow Nanoparticles of Tin and Lead

  • Lee, Gae-Hang;Choi, Sang-Il;Lee, Young-Hwan;Park, Joo-T.
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권5호
    • /
    • pp.1135-1138
    • /
    • 2009
  • Hollow Sn and Pb nanoparticles have been prepared by a rapid injection of an aqueous solution of $SnCl_2$- poly(vinylpyrrolidone) (PVP, surfactant) and $Pb(OAc)_2${\cdot}$3H_2O-PVP$ into an aqueous solution of sodium borohydride (reducing agent) in simple, one-pot reaction at room temperature under an argon atmosphere, respectively. The two hollow nanoparticles have been fully characterized by TEM, HRTEM, SAED, XRD, and EDX analyses. Upon exposure to air, the black Pb hollow nanoparticles are gradually transformed into a mixture of Pb, litharge (tetragonal PbO), massicot (orthorhombic PbO), and $Pb_5O_8$. The order and speed of mixing of the reactants between the metal precursor-PVP and the reductant solutions and stoichiometry of all the reactants are crucial factors for the formation of the two hollow nanocrystals. The Sn and Pb hollow nanoparticles were produced only when 1:(1.5-2) and 1:3 ratios of the Sn and Pb precursors to $NaBH_4$ were employed with a rapid injection, respectively.

제제헝태에 따른 이프리플라본의 생체이용률 비교 (Comparative Bioavailability of Ipriflavone by Pharmaceutical Preparation Types)

  • 정제교;강길선;이종문;신호철;이해방
    • Journal of Pharmaceutical Investigation
    • /
    • 제30권1호
    • /
    • pp.21-26
    • /
    • 2000
  • Bioavailability of ipriflavone (3-phenyl-7-isopropoxy-4H-I-benzopyran-4-one, IP), an antiosteoporotic drug with poor water-solubility, was studied for various types of pharmaceutical preparation in SD rats. The IP preparation types included (1) intact IP, (2) freezer milled IP (FIP), (3) freezer milled IP physically mixed with freezer milled poly-N-vinylpyrrolidone (PVP) (FIP+FPVP) and (4) spray-dried IP with PVP (SIP). Upon oral administration, SIP showed significantly higher absorption and elimination half-lives and the lag time $(t_{lag})$ than those of FIP+FPVP (approximately 2-fold). These results may be due to a sustained releasing effect of IP in the gastrointestinal tract by spray-drying with PVP. The $C_{max}$ of SIP was about 2 and 10 times higher than those of FIP+FPVP and FIP, respectively. The AUC of SIP was about 6 times higher than that of FIP+FPVP and 60 times that of FIP. Scanning electron microscopy (SEM) showed that SIP consisted of the finest particle size and minimal aggregation than other IP preparations. It is concluded that the IP formula prepared by the spray-drying method with PVP is the most effective approach to the improvement of bioavailability of IP.

  • PDF

TREATMENT OF PHENOL CONTAINED IN WASTE WATER USING THE HETEROGENIZED FENTON SYSTEM

  • Kim, Seong-Bo
    • Environmental Engineering Research
    • /
    • 제12권1호
    • /
    • pp.30-35
    • /
    • 2007
  • Fenton system using homogeneous iron catalyst is very powerful in the degradation of organic compounds, but has a disadvantage to remove Fe ions from water after wastewater treatment. Thus, iron catalyst was bounded to support such as inorganic and polymer materials. The PVP supporting iron catalyst showed a good catalytic performance in degradation of phenol contained in waste water and iron catalyst supported on ${SO_4}^{2-}$ type PVP (KEX 511) showed the best catalytic performance. Also, reaction kinetic study was carried out in this system. Reaction constants on various catalysts was obtained from the pseudo first order equation. Reaction rate constants with the heterogenized $FeCl_2/PVP$ catalyst is a three-fold smaller than that of $FeCl_2$ catalyst.

A Facile Preparation of Silver Nanocolloids by Hydrogen Reduction of a Silver Alkylcarbamate Complex

  • Hong, Hyun-Ki;Gong, Myoung-Seon;Park, Chan-Kyo
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권11호
    • /
    • pp.2669-2674
    • /
    • 2009
  • Controlled reduction of silver alkylcarbamate complexes with hydrogen gas was investigated as a facile synthetic method for high concentrations of silver nanocolloids in organic solvent. Polyvinylpyrrolidone (PVP) was used to stabilize the silver colloids obtained from the chemical reduction. To determine optimum conditions for preparation of the stable and controlled silver colloids with the narrowest particle size and distribution, a large number of experiments were carried out involving variations in the concentrations of the silver 2-ethylhexylcarbamate (Ag-EHCB) complex, PVP, and 2-propanol. The initial colloid had a mean particle diameter between 5$\sim$50 nm, as measured by transmission electron microscopy, and exhibited a sharp absorption band in the UV region with a maximum size near 420 nm. After treatment with a reducing agent, the colloids were characterized by ultraviolet-visible spectroscopy, X-ray diffraction, and high-resolution transmission electron microscopy.

The acute and sub-acute toxicity of C60/PVP complex in vivo

  • Dumpis, Marina A.;Iljin, Viktor V.;Litasova, Elena V.;Nikolaev, Dmitry N.;Bulion, Valentina V.;Krylova, Irina B.;Okunevich, Irina V.;Rodionova, Olga M.;Safonova, Albina F.;Selina, Elena N.;Piotrovsky, Levon B.
    • Advances in nano research
    • /
    • 제4권3호
    • /
    • pp.167-179
    • /
    • 2016
  • The detailed study of acute and sub-acute toxicity of the complex polyvinylpyrrolidon (PVP 20 kDa)-wrapped fullerene $C_{60}$ after intraperitoneal (ip) administration was carried out on adult male Wistar rats. The $LD_{50}$ value of $C_{60}/PVP$ complex was found to be 7, 8 g/kg. In sub-acute study which lasted for 30 days the rats were exposed to daily administration of the complex in the doses of 350 or 700 mg/kg. All animals survived during the study and had no significant changes in clinical signs, organ weight, hematological and biochemical parameters of blood. The electrophysiological properties of myocardium and the excretory function of kidneys remained normal. Histological analysis of liver, kidney and spleen at the end of the study also did not demonstrate toxic alterations. It was thus established that intraperitoneal administration of complex $C_{60}/PVP$ has no toxic effect. These results suggest that $C_{60}/PVP$ has no acute and sub-acute toxicity and is a perspective substance for potential application in biology and medicine.

네오디뮴 폐자석 재활용을 위한 화학환원법을 이용한 철 나노 분말 제조 (Synthesis of Iron Nanopowder from FeCl3 Solution by Chemical Reduction Method for Recycling of Spent Neodymium Magnet)

  • 하용황;강윤지;최승훈;윤호성;안종관
    • 한국산학기술학회논문지
    • /
    • 제13권12호
    • /
    • pp.6187-6195
    • /
    • 2012
  • 네오디뮴 폐자석 침출액으로부터 희유금속인 네오디뮴을 회수하기 위해서는 네오디뮴과 같이 침출되는 철의 부가가치를 높이는 연구가 필요하다. 본 연구에서는 네오디뮴과 같이 침출되는 철의 유용자원화를 위한 기초연구로 철 나노분말 제조하는 실험을 수행하였다. 본 연구는 $FeCl_3$ 용액을 철 분말 원료로, 분산제는 $Na_4O_7P_2$와 Polyvinylpyrrolidone를 이용하였고, 환원제로는 $NaBH_4$, 철 나노분말 핵생성 촉진제 시드(seed)로 염화팔라듐을 사용하였다. 제조한 철 나노분말을 XRD, 전자현미경(SEM) 및 PSA 등을 이용하여 분말의 형상 및 크기 등을 분석하였다. 철과 $NaBH_4$의 농도비가 1 : 5이며, 반응시간이 30분 이상인 경우에서 철 분말이 제조되었으며, 이때 철 분말은 구형이었으며, 입도는 약 50 nm ~ 100 nm 크기였다. 분산제 $Na_4O_7P_2$의 경우 100 mg/L에서 철이온의 제타포텐셜이 음의 값을 가지므로 100 mg/L로 일정하게 하고, PVP와 Pd의 농도를 다양하게 하였을 경우, $FeCl_3$와 PVP와 Pd의 질량비 1 : 4 및 1 : 0.001에서, 분산이 양호하고, 입도 100 nm 크기인 철 나노분말을 합성하였다.

차나무 잎의 캘러스 배양을 통한 카테킨류의 생산성 개선 (Improvement of Catechin Productivity in Callus Cultures of Camellia sinensis Leaves)

  • 오순자;고석찬
    • 한국자원식물학회지
    • /
    • 제18권2호
    • /
    • pp.351-358
    • /
    • 2005
  • 차나무 카테킨류의 생산성을 높이기 위하여 차나무 잎의 캘러스 배양시 thiamine-HCl과PVP의 효과를 조사하였다. 캘러스의 생장은 20 mg/L thiamine-HCl이 포함된 캘러스증식배지(0.2 mg/L 2,4-D와 1.0 mg/L TDZ가 첨가된 MS 배지)에서 가장 왕성하여 대조구에 비해 1.7배의 생장을 보였다. 배양된 캘러스의 카페인 함량은 신초에 비해 $10\%$이하로 낮아졌고 총 카테킨류 함량은 40 mg/L thiamine-HCl에서 가장 높아 신초의 1.6배까지 증가하였다. 특히 신초에서는 검출되지 않았던 (-)-epicatechin(EC)이 thiamine-HCl 또는 PVP를 처리하여 배양하였을 경우 모든 처리에서 검출되었으며, (-)-epicatechingallate(ECG)는 신초에서 보다 4.8배나 높은 함량을 나타내었다. 캘러스 생장과 고효율의 카테킨 생산을 고려했을 때 30 mg/L thiamine-HCl이 포함된 배지가 최적의 배양조건으로 판단된다.

변형 폴리올 공정에서 pH에 따라 합성된 Sn 나노입자의 형상 변화 및 형성기구 (Morphology and Formation Mechanism of Sn Nanoparticles Synthesized by Modified Polyol Process at Various pH Values)

  • 신용무;이종현
    • 한국재료학회지
    • /
    • 제24권11호
    • /
    • pp.578-584
    • /
    • 2014
  • To synthesize Sn nanoparticles (NPs) less than 30 nm in diameter, a modified polyol process was conducted at room temperature using a reducing agent, and the effects of different pH values of the initial solutions on the morphology and size of the synthesized Sn NPs were analyzed. tin(II) 2-ethylhexanoate, diethylene glycol, sodium borohydride, polyvinyl pyrrolidone (PVP), and sodium hydroxide were used as a precursor, reaction medium, reducing agent, capping agent, and pH adjusting agent, respectively. It was found by transmission electron microscopy that the morphology of the synthesized Sn NPs varied according to the pH of the initial solution. Moreover, while the size decreased to 11.32 nm with an increase up to 11.66 of the pH value, the size increased rapidly to 39.25 nm with an increase to 12.69. The pH increase up to 11.66 dominantly promoted generation of electrons and increased the amount of initial nucleation in the solution, finally inducing the reduced-size of the Sn particles. However, the additional increase of pH dominantly induced a decrease of PVP by neutralization, which resulted in acceleration of the agglomeration by collisions between particles.