• Title/Summary/Keyword: PV module surface temperature

Search Result 42, Processing Time 0.019 seconds

Mitigation of Potential-Induced Degradation (PID) for PERC Solar Cells Using SiO2 Structure of ARC Layer (반사방지막(ARC)의 SiO2 구조에 따른 PERC 태양전지 PID 열화 완화 상관관계 연구)

  • Oh, Kyoung Suk;Park, Ji Won;Chan, Sung Il
    • Current Photovoltaic Research
    • /
    • v.8 no.4
    • /
    • pp.114-119
    • /
    • 2020
  • In this study, Mitigation of Potential-induced degradation (PID) for PERC solar cells using SiO2 Structure of ARC layer. The conventional PID test was conducted with a cell-level test based on the IEC-62804 test standard, but a copper PID test device was manufactured to increase the PID detection rate. The accelerated aging test was conducted by maintaining 96 hours with a potential difference of 1000 V at a temperature of 60℃. As a result, the PERC solar cell of SiO2-Free ARC structure decreased 22.11% compared to the initial efficiency, and the PERC solar cell of the Upper-SiO2 ARC structure decreased 30.78% of the initial efficiency and the PID reliability was not good. However, the PERC solar cell with the lower-SiO2 ARC structure reduced only 2.44%, effectively mitigating the degradation of PID. Na+ ions in the cover glass generate PID on the surface of the PERC solar cell. In order to prevent PID, the structure of SiNx and SiO2 thin films of the ARC layer is important. SiO2 thin film must be deposited on bottom of ARC layer and the surface of the PERC solar cell N-type emitter to prevent surface recombination and stacking fault defects of the PERC solar cell and mitigated PID degradation.

The Study on the Long-term Reliability Characteristics of Ribbon Joint: Solar Cell Ribbon Thickness and Solder Compositions (태양전지 Ribbon 두께와 조성에 따른 Ribbon접합부의 장기 신뢰성 특성에 관한 연구)

  • Jeon, Yu-Jae;Kang, Min-Soo;So, Kyung-Jun;Lee, Jae-June;Shin, Young-Eui
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.88-94
    • /
    • 2014
  • In this paper, Thermal Shock tests were performed varying the composition of the solder and ribbon thickness (A-type:0.2mm/60Sn40Pb, B-type:0.25mm/60Sn40Pb, C-type:0.2 /62Sn36Ag2Pb, D-type:0.25mm/62Sn36Ag2Pb) for evaluating the long-term reliability about Ribbon junction of Silicon solar cells. Thermal Shock test condition was performed during the 600cycles having $-40^{\circ}C{\sim}85^{\circ}C$ temperature range each 15 minutes; One cycle time was 30min. As a result, the initial efficiency of the A-type, B-type, and C, D-type were showed 15.0%, 15.4% and 15.8% respectively. After thermal shock test, the efficiency decreasing-rate of each type were as follow that A-type was 13.8%, B-Type was 15.4%. C-Type and D-Type was 15.3% and 16.2%, respectively. Also, degradation of surface changes and I-V characteristic curves were showed that the series resistance of the A, C-type was increased. Also, current lowering starting point of C-type shown 0.05volt[v] earlier than that of A-type. And B, D-type shown characteristics of composite lowering efficiency such as increase of series resistance, decrease of parallel resistance and cell damage. Therefore Initial solderability and efficiency of specimens using the solder with SnAgPb were superior. But, It has inferior the long-term reliability. The test was confirmed that as the ribbon thickness increases, long-term reliability of solar cell will decrease.