• Title/Summary/Keyword: PV generation

Search Result 641, Processing Time 0.031 seconds

A Study on the Fault Analysis of the LVDC Using PSCAD/EMTDC (PSCAD/EMTDC를 활용한 LVDC 고장분석)

  • Kim, Soo-Hwan;Choi, Gyu-Wan;Moon, Jong-Fil;Kim, Tae-Hoon;Kim, Ju-Yong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.219-223
    • /
    • 2016
  • DC microgrid system is attracted attention in the world, because DC distribution system is more energy efficient than AC distribution system. To analyse the contribution effects of distributed generation(DG) in LVDC distribution system through modeling the Rectifier, DC/DC converter, Energy Storage System(ESS) and Photovoltaic(PV). using PSCAD/EMTDC. This paper analyses fault response characteristics in LVDC distribution system according to the interconnection and islanding operation of DG. Based on research results on the paper, direction for development of fault current reduction method for LVDC distribution system is suggested.

A Utility Interactive System Control Using PV Generation (태양광 발전을 이용한 계통연계 시스템 제어)

  • Cho, Moon-Taek;Lee, Chung-Sik;Lee, Se-Hun;Hwang, Lak-Hun;Kim, Young-Soo;Na, Seung-Kwon;Song, Ho-Bin
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1224-1226
    • /
    • 2007
  • 전압형 인버터에 의해 제어되며 인버터의 스위칭 게이트 신호 발생은 전압변조가 필요하다. 전압변조는 삼각파 비교 PWM, 공간전압벡터(Space voltage Vector) PWM기법 등으로 실현되고 있으나, SVPWM은 타 방식에 비해 고조파의 왜형률을 감소시키고, 디지털 구현이 용이하며 선형제어 영역을 증가시킬 수 있는 장점이 있다. 따라서 본 논문에서는 먼저 SVPWM의 스위칭 이론 및 각 섹터에 따른 방향에 대해 설명하였고, 태양광발전 시스템을 3상 PWM전압형 인버터로 구성하였고 안정된 변조를 위해서 동기신호와 제어신호를 위해 모토로라사의 56F8323 마이크로프로세서에 의해서 처리하였다. 또한 시스템의 출력전압과 전류의 파형은 전원전압과 출력전류가 위상이 일치되어 단위 역률로 안정된 전력을 공급할 수 있도록 제어하였다.

  • PDF

Residential 10kWh Battery Energy Storage System (가정용 10kWh 배터리 에너지 저장 시스템)

  • Song, In-Beom;Jung, Doo-Yong;Kim, Dong-Seong;Lee, Su-Won;Seo, Kwang-Duk;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.224-225
    • /
    • 2010
  • This paper proposes a battery energy storage system using a photovoltaic generation system. The proposed system consists of a grid, battery and PV array. Considering a daily load profile, radiation and battery, operation modes are divided. An algorithm is presented based on modes. In the paper, operation modes and algorithms are verified through simulations.

  • PDF

Sliding Mode Controller Applied to Coupled Inductor Dual Boost Inverters

  • Fang, Yu;Cao, Songyin;Wheeler, Pat
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1403-1412
    • /
    • 2019
  • A coupled inductor-dual boost-inverter (CIDBI) with a differential structure has been presented for application to a micro-inverter photovoltaic module system due to its turn ratio of a high-voltage level. However, it is difficult to design a CIDBI converter with a conventional PI regulator to be stable and achieve good dynamic performance, given the fact that it is a high order system. In view of this situation, a sliding mode control (SMC) strategy is introduced in this paper, and two different sliding mode controllers (SMCs) are proposed and adopted in the left and right side of two Boost sub-circuits to implement the corresponding regulation of the voltage and current. The schemes of the SMCs have been elaborated in this paper including the establishment of a system variable structure model, selection of the sliding surface, determination of the control law, and presentation of the reaching conditions and sliding domain. Finally, the mathematic analysis and the proposed SMC are verified by experimental results.

Analysis of Electrical Characteristics of Amorphous Silicon Thin Film Photovoltaic Module Exposed Outdoor (옥외 설치된 비정질 실리콘 박막태양전지모듈의 전기적 출력 특성 분석)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.4
    • /
    • pp.62-67
    • /
    • 2008
  • In this study, we analyze the electrical characteristics of amorphous silicon thin film photovoltaic module which are installed about 5 years ago. Four modules from PV system are extracted and measured the maximum power change ratio using solar simulator(Class A). Also, infrared camera is used to get thermal distribution characteristics of system. The external appearance change is compared with initial module by naked eye examination. Through this experiment, 31% maximum output power drop is observed. The detail description is specified as the following paper.

Challenges of decarbonizing electricity in Indonesia: Barriers in the adoption of solar PV

  • Pradityo Sukarso, Adimas
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.4 no.3
    • /
    • pp.27-35
    • /
    • 2018
  • Around the world, there are increasing efforts underway to decarbonize the electricity generation system to mitigate the environmental impacts including climate change. While Indonesia has a huge potential for new and renewable energy, particularly solar photovoltaic, Indonesia has been largely dependent on fossil fuels. As of 2017, the installed capacity for solar photovoltaic in Indonesia was 78.5MW and this was only 0.04% of the theoretical solar potential, which is around 207.9GW($4.8kWh/m^2/day$). With the case of solar photovoltaic, this paper examined the reasons of low adoption of the technology and the challenges of energy transition in Indonesia from the policy and institutional perspectives.

  • PDF

Performance Comparison of Different Solar Array Simulator Control by Ellipse Approximation (태양광패널 모사장치의 제어방식에 따른 소신호 특성 비교 분석)

  • Wellawatta, Thusitha;Seo, Young-Tae;Choi, Sung-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.16-24
    • /
    • 2021
  • Solar array simulator (SAS) is essential equipment in testing and evaluating the power processing performance of a power conditioning system. However, the nonlinearity in the current(I)-voltage(V) characteristic makes the control loop design of SAS a challenging task. Conventionally, only the inner loop is usually considered in the control design approach. However, this study proves that the reference generation loop also interacts with the inner loop and plays a key role in the overall performance of the SAS. In this paper, the performance of voltage-mode control and impedance control, which are two of the most popular architectures for the SAS system, are reviewed and compared by multi-loop analysis.

A Study on Operating Characteristics and Design Factors of Floating Photovoltaic Generating Facilities (수상태양광 발전시스템의 운영특성 및 설계요소에 관한 연구)

  • Kim, Hyun-Han;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1532-1539
    • /
    • 2017
  • The floating photovoltaic system is a new concept in the renewable energy technology. That is similar to land based photovoltaic technology except floating system. So the system needs buoyant objects, mooring, ect, besides modules and supports, and that is able to withstand in water level changes and wind strength. Therefore the floating photovoltaic system is much different from land photovoltaic system. K-water (Korea Water Resources Corporation) has been operating two floating photovoltaic system that's capacity is 100 kW and 500 kW respectively since in summer 2011 for commercial generation, and have construction project for 2,000 kW in Boryeong multipurpose Dam and other areas. Furthermore K-water was developing a tracking-type floating photovoltaic system at Daecheong multipurpose Dam and developed and installed an ocean floating photovoltaic demonstration plant at Sihwa Lake in October 2013 for R&D. In this paper, we introduce that structure of floating photovoltaic system include buoyant structure, mooring system and auxiliary device. Especially the rope which is in part of mooring should be always maintain tension under any water level. Also we explain about structure design concept to wind load in an every loading condition and a kind of structure materials and PV structure types used in water environment. Especially ocean floating PV system is affected by tidal current and typhoon. So there are considering the elements in design. Finally we compare with floating and land photovoltaic on power amount. As a result of that we verified the floating photovoltaic system is more about 6.6~14.2 % efficiency than a general land photovoltaic system.

Transgenic Rice Plants Expressing an Active Tobacco Mitogen-activated Protein Kinase Kinase Induce Multiple Defense Responses

  • Jeong, Jin-A;Yoo, Seung-Jin;Yang, Douck-Hee;Shin, Seo-Ho;Lee, Myung-Chul;Cho, Baik-Ho;Yang, Kwang-Yeol
    • The Plant Pathology Journal
    • /
    • v.24 no.4
    • /
    • pp.375-383
    • /
    • 2008
  • It is well known that NtMEK2, a tobacco MAPK kinase, is the upstream kinase of both salicylic acid-induced protein kinase and wound-induced protein kinase. In addition, expression of $NtMEK2^{DD}$, a constitutively active mutant of NtMEK2, is known to induce multiple defense responses in tobacco. In this study, transgenic rice plants that contained an active or inactive mutant of NtMEK2 under the control of a steroid inducible promoter were generated and used to determine if a similar MAPK cascade is involved in disease resistance in rice. The expression of $NtMEK2^{DD}$ in transgenic rice plants resulted in HR-like cell death. The observed cell death was preceded by the activation of endogenous rice 48-kDa MBP kinase, which is also activated by Xanthomonas oryzae pv. oryzae, the bacterial blight pathogen of rice. In addition, prolonged activation of the MAPK induced the generation of hydrogen peroxide and up-regulated the expression of defense-related genes including the pathogenesis-related genes, peroxidases and glutathione S-transferases. These results demonstrate that NtMEK2 is functionally replaceable with rice MAPK kinase in inducing the activation of the downstream MAPK, which in turn induces multiple defense responses in rice.

Annual Energy Performance Evaluation of Zero Energy House Using Metering Data (실측데이터를 이용한 에너지제로주택의 연간 에너지성능평가)

  • Lim, Hee-Won;Yoon, Jong-Ho;Shin, U-Cheul
    • KIEAE Journal
    • /
    • v.16 no.3
    • /
    • pp.113-119
    • /
    • 2016
  • Purpose: In this study, we evaluate the annual energy performance of the detached house which was designed with the aim of zero energy. Method: The experimental house which was constructed in Gonju Chungnam in 2013, is the single family detached house of light weight wood frame with $100m^2$ of heating area. Thermal transmittance of roof (by ISO 10211) and building external walls are designed as $0.10W/m^2K$ and $0.14W/m^2$ respectively and low-e coating vacuum window glazing with PVC frame was installed. Also grid connected PV system and natural-circulation solar water heater was applied and 6kWp capacity of photovoltaic module was installed in pitched roof and $5m^2$ of solar collector in vertical wall facing the south. We analyzed the 2014 annual data of the detached house in which residents were actually living, measured though web-based remote monitoring system. Result: First, as a result, total annual energy consumption and energy production (PV generation and solar hot water) are 7,919kWh and 7,689kWh respectively and the rate of energy independence is 97.1% which is almost close to the zero energy. Second, plug load and hot water of energy consumption by category showed the highest numbers each with 33% and 31%, with following space heating 24%, electric cooker 8%, lighting 3% in order. Hot water supply is relatively higher than space heating because high insulation makes it decreased.